scispace - formally typeset
Search or ask a question
Author

Wenjing J. Li

Bio: Wenjing J. Li is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Internal transcribed spacer. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Based on analyses of the concatenated internal transcribed spacer regions of the nrDNA operon (ITS) and large subunit rDNA (LSU) gene sequences, as well as morphological characters, the fresh collections of Discosia are introduced as two new species, namely D. italica and D. fagi .
Abstract: Two fresh collections of Discosia were made from dead leaves of Fagus sylvatica in Italy. As these collections could not be cultured, the fruiting bodies were directly used for sequencing using a Forensic DNA Extraction Kit. Based on analyses of the concatenated internal transcribed spacer regions of the nrDNA operon (ITS) and large subunit rDNA (LSU) gene sequences, as well as morphological characters, the fresh collections are introduced as two new species, namely D. italica and D. fagi. Phylogenetically, these two species are distinct from all other Discosia species. Morphologically, D. italica is somewhat similar with D. fagi, but can be distinguished using dimension of conidiomata and conidiogenous cells. Descriptions and illustrations of the new taxa are provided herein.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The present study revises the classification of the hyaline-spored coelomycetes and provides a modern taxonomic framework based on both morphology and phylogeny.
Abstract: Coelomycete is a general term used for asexual fungi which produce conidia in fruiting bodies: pycnidial, acervular, cupulate, pycnothyria or stromatic conidiomata. The group contains numerous plant pathogenic, saprobic and endophytic species associated with a wide range of hosts. Traditionally, morphological characters and host associations have been used as criteria to identify and classify coelomycetes, and this has resulted in a poor understanding of their generic and species boundaries. DNA based taxonomic studies have provided a better outlook of the phylogenetic and evolutionary trends in coelomycetes. However, the present outcomes represent only a preliminary step towards the understanding of coelomycetes. Many genera have not been revisited since they were first described. The present study revises the classification of the hyaline-spored coelomycetes and provides a modern taxonomic framework based on both morphology and phylogeny. In total, 248 genera were investigated, of which less than 100 are known to have sequence data. Multi-locus sequence data analyses of 28S nrDNA, 18S nrDNA, ITS, RNA polymerase II second largest subunit (rpb2), and part of the translation elongation factor 1-alpha gene (tef1) and β-tubulin (tub2) gene regions were analysed. As a result, three new genera and 23 new species are introduced. In addition, three new links between sexual and asexual genera are provided. There are 138 genera that lack sequence data, and these are treated as Ascomycota, genera incertae sedis. Line drawings and descriptions are provided based on the examination of types and fresh collections and on the literature.

58 citations

Journal ArticleDOI
TL;DR: This article provides descriptions and illustrations of microfungi associated with the leaf litter of Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis collected from Taiwan.
Abstract: This article provides descriptions and illustrations of microfungi associated with the leaf litter of Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis collected from Taiwan. These host species are native to the island and Celtis formosana is an endemic tree species. The study revealed 95 species, consisting of two new families (Cylindrohyalosporaceae and Oblongohyalosporaceae), three new genera (Cylindrohyalospora, Neodictyosporium and Oblongohyalospora), 41 new species and 54 new host records. The newly described species are Acrocalymma ampeli (Acrocalymmaceae), Arthrinium mori (Apiosporaceae), Arxiella celtidis (Muyocopronaceae), Bertiella fici (Melanommataceae), Cercophora fici (Lasiosphaeriaceae), Colletotrichum celtidis, C. fici, C. fici-septicae (Glomerellaceae), Conidiocarpus fici-septicae (Capnodiaceae), Coniella fici (Schizoparmaceae), Cylindrohyalospora fici (Cylindrohyalosporaceae), Diaporthe celtidis, D. fici-septicae (Diaporthaceae), Diaporthosporella macarangae (Diaporthosporellaceae), Diplodia fici-septicae (Botryosphaeriaceae), Discosia celtidis, D. fici (Sporocadaceae), Leptodiscella sexualis (Muyocopronaceae), Leptospora macarangae (Phaeosphaeriaceae), Memnoniella alishanensis, M. celtidis, M. mori (Stachybotryaceae), Micropeltis fici, M. ficina (Micropeltidaceae), Microthyrium fici-septicae (Microthyriaceae), Muyocopron celtidis, M. ficinum, Mycoleptodiscus alishanensis (Muyocopronaceae), Neoanthostomella fici (Xylariales genera incertae sedis), Neodictyosporium macarangae (Sordariales genera incertae sedis), Neofusicoccum moracearum (Botryosphaeriaceae), Neophyllachora fici (Phyllachoraceae), Nigrospora macarangae (Apiosporaceae), Oblongohyalospora macarangae (Oblongohyalosporaceae), Ophioceras ficinum (Ophioceraceae), Parawiesneriomyces chiayiensis (Wiesneriomycetaceae), Periconia alishanica, P. celtidis (Periconiaceae), Pseudocercospora fici-septicae (Mycosphaerellaceae), Pseudoneottiospora cannabacearum (Chaetosphaeriaceae) and Pseudopithomyces mori (Didymosphaeriaceae). The new host records are Alternaria burnsii, A. pseudoeichhorniae (Pleosporaceae), Arthrinium hydei, A. malaysianum, A. paraphaeospermum, A. rasikravindrae, A. sacchari (Apiosporaceae), Bartalinia robillardoides (Sporocadaceae), Beltrania rhombica (Beltraniaceae), Cladosporium tenuissimum (Cladosporiaceae), Coniella quercicola (Schizoparmaceae), Dematiocladium celtidicola (Nectriaceae), Diaporthe limonicola, D. millettiae, D. pseudophoenicicola (Diaporthaceae), Dictyocheirospora garethjonesii (Dictyosporiaceae), Dimorphiseta acuta (Stachybotryaceae), Dinemasporium parastrigosum (Chaetosphaeriaceae), Discosia querci (Sporocadaceae), Fitzroyomyces cyperacearum (Stictidaceae), Gilmaniella bambusae (Ascomycota genera incertae sedis), Hermatomyces biconisporus (Hermatomycetaceae), Lasiodiplodia thailandica, L. theobromae (Botryosphaeriaceae), Memnoniella echinata (Stachybotryaceae), Muyocopron dipterocarpi, M. lithocarpi (Muyocopronaceae), Neopestalotiopsis asiatica, N. phangngaensis (Sporocadaceae), Ophioceras chiangdaoense (Ophioceraceae), Periconia byssoides (Periconiaceae), Pestalotiopsis dracaenea, P. formosana, P. neolitseae, P. papuana, P. parva, P. portugallica, P. trachycarpicola (Sporocadaceae), Phragmocapnias betle (Capnodiaceae), Phyllosticta capitalensis (Phyllostictaceae), Pseudopestalotiopsis camelliae-sinensis (Sporocadaceae), Pseudopithomyces chartarum, P. sacchari (Didymosphaeriaceae), Pseudorobillarda phragmitis (Pseudorobillardaceae), Robillarda roystoneae (Sporocadaceae), Sirastachys castanedae, S. pandanicola (Stachybotryaceae), Spegazzinia musae (Didymosphaeriaceae), Stachybotrys aloeticola, S. microspora (Stachybotryaceae), Strigula multiformis (Strigulaceae), Torula fici (Torulaceae), Wiesneriomyces laurinus (Wiesneriomycetaceae) and Yunnanomyces pandanicola (Sympoventuriaceae). The taxonomic placement of most taxa discussed in this study is based on morphological observation of specimens, coupled with multi-locus phylogenetic analyses of sequence data. In addition, this study provides a host-fungus database for future studies and increases knowledge of fungal diversity, as well as new fungal discoveries from the island.

35 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper collected leaf samples of C. henryi and C. mollissima and identified twenty-six fungal species, including one new family, one new genus, and five new species.
Abstract: Two Castanea plant species, C. henryi and C. mollissima, are cultivated in China to produce chestnut crops. Leaf spot diseases commonly occur in Castanea plantations, however, little is known about the fungal species associated with chestnut leaf spots. In this study, leaf samples of C. henryi and C. mollissima were collected from Beijing, Guizhou, Hunan, Sichuan and Yunnan Provinces, and leaf-inhabiting fungi were identified based on morphology and phylogeny. As a result, twenty-six fungal species were confirmed, including one new family, one new genus, and five new species. The new taxa are Pyrisporaceae fam. nov., Pyrispora gen. nov., Aureobasidium castaneae sp. nov., Discosia castaneae sp. nov., Monochaetia castaneae sp. nov., Neopestalotiopsis sichuanensis sp. nov. and Pyrispora castaneae sp. nov.

30 citations

01 Jan 2015
TL;DR: Ten new asexual taxa (Phaeosphaeriaceae) were collected from terrestrial habitats in Italy and introduced and combined ITS and LSU sequence data from the new taxa together with those from GenBank were analyzed to establish the phylogenetic placement of these taxa.
Abstract: Species of Phaeosphaeriaceae, especially the asexual taxa, are common plant pathogens that infect many important economic crops. Ten new asexual taxa (Phaeosphaeriaceae) were collected from terrestrial habitats in Italy and are introduced in this paper. In order to establish the phylogenetic placement of these taxa within Phaeosphaeriaceae we analyzed combined ITS and LSU sequence data from the new taxa, together with those from GenBank. Based on morphology and molecular data, Poaceicola gen. nov. is introduced to accommodate the new species Po. arundinis (type species), Po. bromi and Po. elongata. The new species Parastagonospora dactylidis, P. minima, P. italica, P. uniseptata and P. allouniseptata, Septoriella allojunci and Wojnowicia spartii are also introduced with illustrated accounts and compared with similar taxa. We also describe an asexual morph of a Nodulosphaeria species for the first time.

16 citations

Journal ArticleDOI
TL;DR: Two new asexual fungal species and a new host for a previously described species are reported and the phylogenetic analyses indicated that D. rhododendronicola sp.
Abstract: In the present study, we report two new asexual fungal species (i.e., Discosia rhododendricola, Neopestalotiopsis rhododendricola (Sporocadaceae) and a new host for a previously described species (i.e., Diaporthe nobilis; Diaporthaceae). All species were isolated from Rhododendron spp. in Kunming, Yunnan Province, China. All taxa are described based on morphology, and phylogenetic relationships were inferred using a multigenic approach (LSU, ITS, RPB2, TEF1 and TUB2). The phylogenetic analyses indicated that D. rhododendronicola sp. nov. is phylogenetically related to D. muscicola, and N. rhododendricola sp. nov is related to N. sonnaratae. Diaporthe nobilis is reported herein as a new host record from Rhododendron sp. for China, and its phylogeny is depicted based on ITS, TEF1 and TUB2 sequence data.

2 citations