scispace - formally typeset
Search or ask a question
Author

Wenlan Zhang

Other affiliations: University of Würzburg
Bio: Wenlan Zhang is an academic researcher from University of Münster. The author has contributed to research in topics: Shiga toxin & Escherichia coli. The author has an hindex of 31, co-authored 50 publications receiving 5090 citations. Previous affiliations of Wenlan Zhang include University of Würzburg.


Papers
More filters
Journal ArticleDOI
20 Jul 2011-PLOS ONE
TL;DR: It is suggested that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone.
Abstract: An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.

739 citations

Journal ArticleDOI
TL;DR: Stx2c-positive STEC isolates can cause HUS, but the presence of stx2d or stX2e may predict a milder disease with a minimal risk of HUS.
Abstract: Shiga toxin (Stx)-producing Escherichia coli (STEC) from patients with hemolytic-uremic syndrome (HUS), patients with diarrhea without HUS, or asymptomatic subjects were genotyped to assess associations between stx2 variants and clinical manifestations of infection. Neither stx2d nor stx2e was found in 268 STEC isolates from patients with HUS. Of 262 STEC isolates from patients with diarrhea, stx(2d) was found in 41 (15.6%; P<.000001), and stx2e was found in 12 (4.6%; P=.0004). The stx2c genotype frequency was similar among isolates from patients with HUS (3.7%) and diarrhea (5.0%). The frequencies of stx2c, stx2d, and stx2e among 96 STEC isolates from asymptomatic subjects were comparable to those among isolates from patients with diarrhea. None of the 626 STEC isolates contained stx2f. All stx2d-positive or stx2e-positive STEC isolates were eae negative and originated from subjects older than those with STEC isolates with stx2c. stx2c-positive STEC isolates can cause HUS, but the presence of stx2d or stx2e may predict a milder disease with a minimal risk of HUS.

720 citations

Journal ArticleDOI
TL;DR: Augmented adherence of the strain to intestinal epithelium might facilitate systemic absorption of Shiga toxin and could explain the high progression to haemolytic uraemic syndrome.
Abstract: Summary Background In an ongoing outbreak of haemolytic uraemic syndrome and bloody diarrhoea caused by a virulent Escherichia coli strain O104:H4 in Germany (with some cases elsewhere in Europe and North America), 810 cases of the syndrome and 39 deaths have occurred since the beginning of May, 2011. We analysed virulence profiles and relevant phenotypes of outbreak isolates recovered in our laboratory. Methods We analysed stool samples from 80 patients that had been submitted to the National Consulting Laboratory for Haemolytic Uraemic Syndrome in Munster, Germany, between May 23 and June 2, 2011. Isolates were screened with standard PCR for virulence genes of Shiga-toxin-producing E coli and a newly developed multiplex PCR for characteristic features of the outbreak strain ( rfb O104 , fliC H4 , stx 2 , and terD ). Virulence profiles of the isolates were determined with PCR targeting typical virulence genes of Shiga-toxin-producing E coli and of other intestinal pathogenic E coli . We sequenced stx with Sanger sequencing and measured Shiga-toxin production, adherence to epithelial cells, and determined phylogeny and antimicrobial susceptibility. Findings All isolates were of the HUSEC041 clone (sequence type 678). All shared virulence profiles combining typical Shiga-toxin-producing E coli ( stx 2 , iha, lpf O26 , lpf O113 ) and enteroaggregative E coli ( aggA, aggR, set1, pic, aap ) loci and expressed phenotypes that define Shiga-toxin-producing E coli and enteroaggregative E coli , including production of Shiga toxing 2 and aggregative adherence to epithelial cells. Isolates additionally displayed an extended-spectrum β-lactamase phenotype absent in HUSEC041. Interpretation Augmented adherence of the strain to intestinal epithelium might facilitate systemic absorption of Shiga toxin and could explain the high progression to haemolytic uraemic syndrome. This outbreak demonstrates that blended virulence profiles in enteric pathogens, introduced into susceptible populations, can have extreme consequences for infected people. Funding German Federal Ministry of Education and Research, Network Zoonoses.

717 citations

Journal ArticleDOI
TL;DR: The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer.
Abstract: A genomic island encoding the biosynthesis and secretion pathway of putative hybrid nonribosomal peptide-polyketide colibactin has been recently described in Escherichia coli. Colibactin acts as a cyclomodulin and blocks the eukaryotic cell cycle. The origin and prevalence of the colibactin island among enterobacteria are unknown. We therefore screened 1,565 isolates of different genera and species related to the Enterobacteriaceae by PCR for the presence of this DNA element. The island was detected not only in E. coli but also in Klebsiella pneumoniae, Enterobacter aerogenes, and Citrobacter koseri isolates. It was highly conserved among these species and was always associated with the yersiniabactin determinant. Structural variations between individual strains were only observed in an intergenic region containing variable numbers of tandem repeats. In E. coli, the colibactin island was usually restricted to isolates of phylogenetic group B2 and inserted at the asnW tRNA locus. Interestingly, in K. pneumoniae, E. aerogenes, C. koseri, and three E. coli strains of phylogenetic group B1, the functional colibactin determinant was associated with a genetic element similar to the integrative and conjugative elements ICEEc1 and ICEKp1 and to several enterobacterial plasmids. Different asn tRNA genes served as chromosomal insertion sites of the ICE-associated colibactin determinant: asnU in the three E. coli strains of ECOR group B1, and different asn tRNA loci in K. pneumoniae. The detection of the colibactin genes associated with an ICE-like element in several enterobacteria provides new insights into the spread of this gene cluster and its putative mode of transfer. Our results shed light on the mechanisms of genetic exchange between members of the family Enterobacteriaceae.

266 citations

Journal ArticleDOI
TL;DR: An eae nomenclature system based on the Greek alphabet is recommended and an updated PCR scheme for amplification and typing of E. coli eae is provided to provide evidence for intragenic recombination.
Abstract: In this study, we determined the sequences of four intimin variant genes detected in attaching and effacing Escherichia coli isolates of human origin. Three of them were novel and were designated eae-eta (eta), eae-iota (iota), and eae-kappa (kappa). The fourth was identical to the recently described eae-zeta (zeta), isolated from a bovine E. coli O84:NM isolate. We compared these sequences with those of published intimin-alpha, intimin-beta, intimin-gamma1, intimin-gamma2, intimin- epsilon, and intimin-theta alleles. Sequence analysis of these 10 intimin alleles confirmed extensive genetic diversity within the intimin gene family in E. coli. The genetic diversity was more prominent in the 3' region (starting at bp 2,112), which encodes the binding domain of intimin. Phylogenetic analyses revealed four groups of closely related intimin genes: alpha and zeta; beta and kappa; gamma1 and gamma2/theta; and epsilon and eta. Calculation of homoplasy ratios of sequences of the 5' region of eae (positions 1 to 2,111) revealed evidence for intragenic recombination. Split decomposition analysis also indicates that recombination events have played a role in the evolutionary history of eae. In conclusion, we recommend an eae nomenclature system based on the Greek alphabet and provide an updated PCR scheme for amplification and typing of E. coli eae.

259 citations


Cited by
More filters
Journal ArticleDOI
05 Oct 2012-Science
TL;DR: High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10–deficient (Il10−/−) mice, suggesting that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities.
Abstract: Inflammation alters host physiology to promote cancer, as seen in colitis-associated colorectal cancer (CRC). Here, we identify the intestinal microbiota as a target of inflammation that affects the progression of CRC. High-throughput sequencing revealed that inflammation modifies gut microbial composition in colitis-susceptible interleukin-10-deficient (Il10(-/-)) mice. Monocolonization with the commensal Escherichia coli NC101 promoted invasive carcinoma in azoxymethane (AOM)-treated Il10(-/-) mice. Deletion of the polyketide synthase (pks) genotoxic island from E. coli NC101 decreased tumor multiplicity and invasion in AOM/Il10(-/-) mice, without altering intestinal inflammation. Mucosa-associated pks(+) E. coli were found in a significantly high percentage of inflammatory bowel disease and CRC patients. This suggests that in mice, colitis can promote tumorigenesis by altering microbial composition and inducing the expansion of microorganisms with genotoxic capabilities.

1,720 citations

Journal ArticleDOI
TL;DR: Management of HUS remains supportive; there are no specific therapies to ameliorate the course, and the best way to prevent HUS is to prevent primary infection with Shiga-toxin-producing bacteria.

1,647 citations

Journal ArticleDOI
TL;DR: A Web-based method for MLST of 66 bacterial species based on whole-genome sequencing data that enables investigators to determine the sequence types of their isolates on the basis of WGS data.
Abstract: Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the “gold standard” of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.

1,620 citations

Journal ArticleDOI
Lin Liu1, Yinhu Li1, Siliang Li1, Ni Hu1, Yimin He1, Ray Pong1, Danni Lin1, Lihua Lu1, Maggie Law1 
TL;DR: Technologies of next-generation sequencing systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system.
Abstract: With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized.

1,420 citations

Journal ArticleDOI
TL;DR: The performance of these instruments were compared by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011, and the MiSeq had the highest throughput per run and lowest error rates.
Abstract: Three benchtop high-throughput sequencing instruments are now available. The 454 GS Junior (Roche), MiSeq (Illumina) and Ion Torrent PGM (Life Technologies) are laser-printer sized and offer modest set-up and running costs. Each instrument can generate data required for a draft bacterial genome sequence in days, making them attractive for identifying and characterizing pathogens in the clinical setting. We compared the performance of these instruments by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011. The MiSeq had the highest throughput per run (1.6 Gb/run, 60 Mb/h) and lowest error rates. The 454 GS Junior generated the longest reads (up to 600 bases) and most contiguous assemblies but had the lowest throughput (70 Mb/run, 9 Mb/h). Run in 100-bp mode, the Ion Torrent PGM had the highest throughput (80–100 Mb/h). Unlike the MiSeq, the Ion Torrent PGM and 454 GS Junior both produced homopolymer-associated indel errors (1.5 and 0.38 errors per 100 bases, respectively).

1,346 citations