scispace - formally typeset
Search or ask a question
Author

Wenqi Ren

Bio: Wenqi Ren is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Computer science & Deblurring. The author has an hindex of 26, co-authored 111 publications receiving 3914 citations. Previous affiliations of Wenqi Ren include Tianjin University & Jimei University.


Papers
More filters
Book ChapterDOI
08 Oct 2016
TL;DR: A multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps by combining a coarse-scale net which predicts a holistic transmission map based on the entire image, and a fine-scale network which refines results locally.
Abstract: The performance of existing image dehazing methods is limited by hand-designed features, such as the dark channel, color disparity and maximum contrast, with complex fusion schemes. In this paper, we propose a multi-scale deep neural network for single-image dehazing by learning the mapping between hazy images and their corresponding transmission maps. The proposed algorithm consists of a coarse-scale net which predicts a holistic transmission map based on the entire image, and a fine-scale net which refines results locally. To train the multi-scale deep network, we synthesize a dataset comprised of hazy images and corresponding transmission maps based on the NYU Depth dataset. Extensive experiments demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both synthetic and real-world images in terms of quality and speed.

1,230 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive study and evaluation of existing single image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called Realistic Single-Image DEhazing (RESIDE).
Abstract: We present a comprehensive study and evaluation of existing single-image dehazing algorithms, using a new large-scale benchmark consisting of both synthetic and real-world hazy images, called REalistic Single-Image DEhazing (RESIDE). RESIDE highlights diverse data sources and image contents, and is divided into five subsets, each serving different training or evaluation purposes. We further provide a rich variety of criteria for dehazing algorithm evaluation, ranging from full-reference metrics to no-reference metrics and to subjective evaluation, and the novel task-driven evaluation. Experiments on RESIDE shed light on the comparisons and limitations of the state-of-the-art dehazing algorithms, and suggest promising future directions.

922 citations

Journal ArticleDOI
TL;DR: This paper constructs an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images and proposes an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs).
Abstract: Underwater image enhancement has been attracting much attention due to its significance in marine engineering and aquatic robotics. Numerous underwater image enhancement algorithms have been proposed in the last few years. However, these algorithms are mainly evaluated using either synthetic datasets or few selected real-world images. It is thus unclear how these algorithms would perform on images acquired in the wild and how we could gauge the progress in the field. To bridge this gap, we present the first comprehensive perceptual study and analysis of underwater image enhancement using large-scale real-world images. In this paper, we construct an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images. We treat the rest 60 underwater images which cannot obtain satisfactory reference images as challenging data. Using this dataset, we conduct a comprehensive study of the state-of-the-art underwater image enhancement algorithms qualitatively and quantitatively. In addition, we propose an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs). The benchmark evaluations and the proposed Water-Net demonstrate the performance and limitations of state-of-the-art algorithms, which shed light on future research in underwater image enhancement. The dataset and code are available at https://li-chongyi.github.io/proj_benchmark.html .

697 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: An efficient algorithm to directly restore a clear image from a hazy input using an end-to-end trainable neural network that consists of an encoder and a decoder is proposed.
Abstract: In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original hazy image by applying White Balance (WB), Contrast Enhancing (CE), and Gamma Correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final dehazed image is yielded by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach such that the halo artifacts can be avoided. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms.

567 citations

Journal ArticleDOI
TL;DR: A novel spatially variant recurrent neural network (RNN) is proposed as an edge stream to model edge details, with the guidance of another auto-encoder, to enhance the visibility of degraded images.
Abstract: Camera sensors often fail to capture clear images or videos in a poorly lit environment. In this paper, we propose a trainable hybrid network to enhance the visibility of such degraded images. The proposed network consists of two distinct streams to simultaneously learn the global content and the salient structures of the clear image in a unified network. More specifically, the content stream estimates the global content of the low-light input through an encoder–decoder network. However, the encoder in the content stream tends to lose some structure details. To remedy this, we propose a novel spatially variant recurrent neural network (RNN) as an edge stream to model edge details, with the guidance of another auto-encoder. The experimental results show that the proposed network favorably performs against the state-of-the-art low-light image enhancement algorithms.

293 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

01 Jan 2006

3,012 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Proceedings Article
01 Jan 1999

2,010 citations