scispace - formally typeset
Search or ask a question
Author

Werner Hofmann

Bio: Werner Hofmann is an academic researcher from Max Planck Society. The author has contributed to research in topics: High Energy Stereoscopic System & HEGRA. The author has an hindex of 100, co-authored 777 publications receiving 51945 citations. Previous affiliations of Werner Hofmann include University of California, Berkeley & Heidelberg University.


Papers
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations

Journal ArticleDOI
Lennart Lindegren1, Jose M Hernandez2, Alex Bombrun, Sergei A. Klioner3, Ulrich Bastian4, M. Ramos-Lerate, A. de Torres, H. Steidelmüller3, C.A. Stephenson5, David Hobbs1, U. Lammers2, M. Biermann4, R. Geyer3, Thomas Hilger3, Daniel Michalik1, U. Stampa4, Paul J. McMillan1, J. Castañeda6, M. Clotet6, G. Comoretto5, Michael Davidson7, C. Fabricius6, G. Gracia, Nigel Hambly7, A. Hutton, A. Mora, Jordi Portell6, F. van Leeuwen8, U. Abbas, A. Abreu, Martin Altmann4, Martin Altmann9, Alexandre Humberto Andrei, E. Anglada10, L. Balaguer-Núñez6, C. Barache9, Ugo Becciani11, Stefano Bertone12, Stefano Bertone9, Luciana Bianchi, S. Bouquillon9, Geraldine Bourda13, T. Brüsemeister4, Beatrice Bucciarelli, D. Busonero, R. Buzzi, Rossella Cancelliere14, T. Carlucci9, Patrick Charlot13, N. Cheek10, Mariateresa Crosta, C. Crowley, J. H. J. de Bruijne15, F. de Felice16, R. Drimmel, P. Esquej, Agnes Fienga17, E. Fraile, Mario Gai, N. Garralda6, J.J. González-Vidal6, Raphael Guerra2, M. Hauser18, M. Hauser4, Werner Hofmann4, B. Holl19, Stefan Jordan4, Mario G. Lattanzi, H. Lenhardt4, S. Liao20, E. Licata, Tim Lister21, W. Löffler4, Jon Marchant22, J. M. Martín-Fleitas, R. Messineo23, Francois Mignard17, Roberto Morbidelli, E. Poggio14, Alberto Riva, Nicholas Rowell7, E. Salguero, M. Sarasso, Eva Sciacca11, H. I. Siddiqui5, Richard L. Smart, Alessandro Spagna, Iain A. Steele22, F. Taris9, J. Torra6, A. van Elteren24, W. van Reeven, Alberto Vecchiato 
TL;DR: In this article, the authors describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the ASTR task.
Abstract: Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase.Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task.Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion.Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1 , respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1 . From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small ( DR2 astrometry are given in the appendices.

1,836 citations

Journal ArticleDOI
Marcos Daniel Actis1, G. Agnetta2, Felix Aharonian3, A. G. Akhperjanian  +682 moreInstitutions (109)
TL;DR: The ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes as mentioned in this paper, which is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100GeV and above 100 TeV.
Abstract: Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

1,006 citations

Journal ArticleDOI
Felix Aharonian1, A. G. Akhperjanian1, A. R. Bazer-Bachi, M. Beilicke1, Wystan Benbow1, David Berge1, Konrad Bernlöhr1, Catherine Boisson, O. Bolz1, V. Borrel2, Ilana M. Braun1, E. Brion, A. M. Brown3, Rolf Bühler1, I. Büsching4, Timothé Boutelier5, Svenja Carrigan1, P. M. Chadwick3, L.-M. Chounet, G. Coignet, R. Cornils1, Luigi Costamante1, B. Degrange, Hugh Dickinson3, A. Djannati-Ataï, L. O'Connor-Drury6, Guillaume Dubus, Kathrin Egberts1, Dimitrios Emmanoulopoulos7, P. Espigat, C. Farnier, F. Feinstein, E. Ferrero1, A. Fiasson, G. Fontaine, Seb. Funk1, M. Fuling1, Y. A. Gallant, B. Giebels, J.F. Glicenstein, B. Glück8, P. Goret, C. Hadjichristidis3, D. Hauser1, M. Hauser7, G. Heinzelmann9, Gilles Henri5, German Hermann1, Jim Hinton1, A. Hoffmann10, Werner Hofmann1, M. Holleran4, S. Hoppe1, Dieter Horns1, A. Jacholkowska, O. C. de Jager4, Eckhard Kendziorra10, M. Kerschhaggl11, B. Khélifi, Nu. Komin, K. Kosack1, G. Lamanna, I. J. Latham3, R. Le Gallou3, Anne Lemiere, M. Lemoine-Goumard, Thomas Lohse11, Jean Michel Martin, Olivier Martineau-Huynh, A. Marcowith, Conor Masterson1, Gilles Maurin, T. J. L. McComb3, Emmanuel Moulin, M. de Naurois1, D. Nedbal1, S. J. Nolan3, A. Noutsos12, J.-P. Olive, K. J. Orford1, J. L. Osborne1, M. Panter1, Guy Pelletier5, P.-O. Petrucci, S. Pita, G. Pühlhofer1, Michael Punch, S. Ranchon, B. C. Raubenheimer4, M. Raue1, S. M. Rayner3, A. Reimer5, Olaf Reimer5, J. Ripken9, L. Rob13, L. Rolland, S. Rosier-Lees, Gavin Rowell1, V. Sahakian14, Andrea Santangelo1, L. Saugé5, S. Schlenker11, Reinhard Schlickeiser15, R. Schröder15, U. Schwanke11, S. Schwarzburg10, S. Schwemmer7, A. Shalchi15, Helene Sol, D. Spangler3, Felix Spanier5, R. Steenkamp16, C. Stegmann8, G. Superina, P. H. Tam7, J. P. Tavernet, Regis Terrier, M. Tluczykont, C. van Eldik1, G. Vasileiadis, Christo Venter4, J. P. Vialle, P. Vincent, Heinrich J. Völk1, Stefan Wagner7, Martin Ward3 
TL;DR: In this paper, the average flux observed during an extreme gamma-ray outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}
Abstract: The high-frequency peaked BL Lac PKS 2155-304 at redshift z=0.116 is a well-known VHE (>100 GeV) gamma-ray emitter. Since 2002 its VHE flux has been monitored using the H.E.S.S. stereoscopic array of imaging atmospheric-Cherenkov telescopes in Namibia. During the July 2006 dark period, the average VHE flux was measured to be more than ten times typical values observed from the object. This article focuses solely on an extreme gamma-ray outburst detected in the early hours of July 28, 2006 (MJD 53944). The average flux observed during this outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}$$\pm$$0.34_{\rm syst}$) $\times$ 10$^{-9}$ cm$^{-2}$ s$^{-1}$, corresponding to ~7 times the flux, I(>200 GeV), observed from the Crab Nebula. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10$^9 M_\odot$ black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.

788 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations