scispace - formally typeset
Search or ask a question
Author

Werner M. Nau

Bio: Werner M. Nau is an academic researcher from Jacobs University Bremen. The author has contributed to research in topics: Supramolecular chemistry & Quenching (fluorescence). The author has an hindex of 62, co-authored 314 publications receiving 14595 citations. Previous affiliations of Werner M. Nau include China University of Petroleum & University of Vienna.


Papers
More filters
Journal ArticleDOI
TL;DR: The fundamental properties of CBn homologues and their cyclic derivatives are discussed with a focus on their synthesis and their applications in catalysis.
Abstract: In the wide area of supramolecular chemistry, cucurbit[n]urils (CBn) present themselves as a young family of molecular containers, able to form stable complexes with various guests, including drug molecules, amino acids and peptides, saccharides, dyes, hydrocarbons, perfluorinated hydrocarbons, and even high molecular weight guests such as proteins (e.g., human insulin). Since the discovery of the first CBn, CB6, the field has seen tremendous growth with respect to the synthesis of new homologues and derivatives, the discovery of record binding affinities of guest molecules in their hydrophobic cavity, and associated applications ranging from sensing to drug delivery. In this review, we discuss in detail the fundamental properties of CBn homologues and their cyclic derivatives with a focus on their synthesis and their applications in catalysis.

960 citations

Journal ArticleDOI
TL;DR: Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution and how these complexes interact with each other and with solvent-free substrates is studied.
Abstract: Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution Roy N. Dsouza, Uwe Pischel,* and Werner M. Nau* School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany Centro de Investigaci on en Química Sostenible (CIQSO) and Departamento de Ingeniería Química, Química Física y Química Org anica, Universidad de Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain

897 citations

Journal ArticleDOI
TL;DR: Water-box simulations were used to characterize the different contributions from high-energy water and enabled the calculation of the association free enthalpies for selected cucurbituril complexes to within a 10% deviation from experimental values.
Abstract: Traditional descriptions of the hydrophobic effect on the basis of entropic arguments or the calculation of solvent-occupied surfaces must be questioned in view of new results obtained with supramolecular complexes. In these studies, it was possible to separate hydrophobic from dispersive interactions, which are strongest in aqueous systems. Even very hydrophobic alkanes associate significantly only in cavities containing water molecules with an insufficient number of possible hydrogen bonds. The replacement of high-energy water in cavities by guest molecules is the essential enthalpic driving force for complexation, as borne out by data for complexes of cyclodextrins, cyclophanes, and cucurbiturils, for which complexation enthalpies of up to -100 kJ mol(-1) were reached for encapsulated alkyl residues. Water-box simulations were used to characterize the different contributions from high-energy water and enabled the calculation of the association free enthalpies for selected cucurbituril complexes to within a 10% deviation from experimental values. Cavities in artificial receptors are more apt to show the enthalpic effect of high-energy water than those in proteins or nucleic acids, because they bear fewer or no functional groups in the inner cavity to stabilize interior water molecules.

443 citations

Journal ArticleDOI
TL;DR: A new design criterion for aqueous synthetic receptors has therefore emerged, which is the optimization of the size of cavities and binding pockets with respect to the energy and number of residing water molecules.
Abstract: Molecular dynamics simulations and isothermal titration calorimetry (ITC) experiments with neutral guests illustrate that the release of high-energy water from the cavity of cucurbit[n]uril (CBn) macrocycles is a major determinant for guest binding in aqueous solutions. The energy of the individual encapsulated water molecules decreases with increasing cavity size, because larger cavities allow for the formation of more stable H-bonded networks. Conversely, the total energy of internal water increases with the cavity size because the absolute number of water molecules increases. For CB7, which has emerged as an ultrahigh affinity binder, these counteracting effects result in a maximum energy gain through a complete removal of water molecules from the cavity. A new design criterion for aqueous synthetic receptors has therefore emerged, which is the optimization of the size of cavities and binding pockets with respect to the energy and number of residing water molecules.

410 citations

Journal ArticleDOI
TL;DR: The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived.
Abstract: The factors affecting host-guest complexation between the molecular container compound cucurbit[6]uril (CB6) and various guests in aqueous solution are studied, and a detailed complexation mechanism in the presence of cations is derived. The formation of the supramolecular complex is studied in detail for cyclohexylmethylammonium ion as guest. The kinetics and thermodynamics of complexation is monitored by NMR as a function of temperature, salt concentration, and cation size. The binding constants and the ingression rate constants decrease with increasing salt concentration and cation-binding constant, in agreement with a competitive binding of the ammonium site of the guest and the metal cation with the ureido carbonyl portals of CB6. Studies as a function of guest size indicate that the effective container volume of the CB6 cavity is approximately 105 A(3). It is suggested that larger guests are excluded for two reasons: a high activation barrier for ingression imposed by the tight CB6 portals and a destabilization of the complex due to steric repulsion inside. For example, in the case of the nearly spherical azoalkane homologues 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH, volume ca. 96 A(3)) and 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO, volume ca. 110 A(3)), the former forms the CB6 complex promptly with a sizable binding constant (1300 M(-1)), while the latter does not form a complex even after several months at optimized complexation conditions. Molecular mechanics calculations are performed for several CB6/guest complexes. A qualitative agreement is found between experimental and calculated activation energies for ingression as a function of both guest size and state of protonation. The potential role of constrictive binding by CB6 is discussed.

401 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
Abstract: In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.

3,550 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations