scispace - formally typeset
Search or ask a question
Author

Werner Wesch

Bio: Werner Wesch is an academic researcher from University of Jena. The author has contributed to research in topics: Ion implantation & Ion. The author has an hindex of 36, co-authored 264 publications receiving 4632 citations. Previous affiliations of Werner Wesch include Schiller International University & Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a defect-interaction and amorphization model is used to analyse the dose dependence of defect production, as obtained by the various methods, and a critical implantation temperature is obtained, which was found to vary with the ion mass and the implantation energy.
Abstract: The paper presents the damage accumulation in silicon carbide (SiC) as a function of the ion mass, the ion energy and the implantation temperature. A defect-interaction and amorphization model is used to analyse the dose dependence of defect production, as obtained by the various methods. The temperature dependence of the amorphization dose can be represented assuming a thermally enhanced annealing within the primary collision cascades. On the basis of such a model, a critical implantation temperature is obtained, which was found to vary with the ion mass and the implantation energy. The concurrent influence of implantation temperature and ion fluence on the resulting damage distribution in SiC is demonstrated. The damage annealing of ion implanted SiC is investigated for low, medium and high damage concentrations. The effect of the implantation temperature and the concentration of implanted atoms, both influencing the kind of defects obtained after implantation, on the annealing behaviour is analysed.

184 citations

Journal ArticleDOI
Werner Wesch1
TL;DR: In this paper, the authors summarized some aspects of crystal growth and processing and discussed arising problems in the process of crystallizing silicon carbide, a material of choice for special optoelectronic and electronic devices working under extreme conditions.
Abstract: Silicon carbide with its outstanding physical properties is a material of choice for special optoelectronic and electronic devices working under extreme conditions. Synthesis as well as processing are complicated compared to other materials. The present paper summarizes some aspects of crystal growth and processing and discusses arising problems.

169 citations

Journal ArticleDOI
TL;DR: It is demonstrated that during irradiation with high-energy heavy ions amorphous silicon deforms plastically in the same way as conventional glasses, providing experimental evidence for the existence of a low-density liquid.
Abstract: Amorphous silicon is a semiconductor with a lower density than the metallic silicon liquid. It is widely believed that the amorphous-liquid transition is a first-order melting transition. In contrast to this, recent computer simulations and the experimental observation of pressure-induced amorphization of nanoporous silicon have revived the idea of an underlying liquid-liquid phase transition implying the existence of a low-density liquid and its glass transition to the amorphous solid. Here we demonstrate that during irradiation with high-energy heavy ions amorphous silicon deforms plastically in the same way as conventional glasses. This behaviour provides experimental evidence for the existence of the low-density liquid. The glass transition temperature for a timescale of 10 picoseconds is estimated to be about 1,000 K. Our results support the idea of liquid polymorphism as a general phenomenon in tetrahedral networks.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of high electronic energy deposition represents itself as a competition between damage formation and annealing, and it can be concluded that the two processes dominate is mainly determined by the electronic energy.
Abstract: Track formation due to high electronic energy deposition during swift heavy ion irradiation is well known in insulating materials as well as in some intermetallic compounds and metals. In semiconductors the physical situation was much less clear, and only during the last few years several experimental results on the effect of high electronic energy deposition were published, which are summarised and discussed in the present paper. Like in insulators, swift heavy ion irradiation may cause amorphous tracks in some semiconductors, such as InP, InSb, InAs, GaSb and Ge, if a certain value of the electronic energy deposition ee per ion and unit length characteristic for the material and the ion is exceeded. The critical values of ee are much higher than in the other materials, and the corresponding ion energies are close to the maximum ion energies available with the existing high energy accelerators. On the other hand, with cluster ions, as e.g. C60, tracks are easily formed in Si, Ge and GaAs with ion energies of several tens of MeV. Beside damage and track formation, annealing of damage was observed in the semiconductors, and it can be concluded that the effect of high electronic energy deposition represents itself as a competition between damage formation and annealing. Which of the two processes dominates is mainly determined by the electronic energy deposition. Qualitatively the observed behaviour can be explained in the framework of the thermal spike model. However, a quantitative description of all data available is not successful in the framework of this concept. This is obviously due to the fact that the effects are influenced not only by the electronic energy deposition, but also by a variety of other parameters, such as the ion velocity, the ion mass, the charge state of the impinging ions and the radial distribution of the electronic energy around the ions' path. All these parameters have to be taken into account within a theoretical description. However, the present situation is characterised by a lack of sufficient experimental data, and further systematic work is required to make progress in this interesting field.

132 citations

Journal ArticleDOI
TL;DR: In this article, N, Ar, and Er ions were implanted into ZnO at 15 K within a large fluence range, and the Rutherford backscattering technique in the channeling mode was used to study in situ the damage built-up in the Zn sublattice.
Abstract: N, Ar, and Er ions were implanted into ZnO at 15 K within a large fluence range. The Rutherford backscattering technique in the channeling mode was used to study in situ the damage built-up in the Zn sublattice at 15 K. Several stages in the damage formation were observed. From the linear increase of the damage for low implantation fluences, an upper limit of the Zn displacement energy of 65 eV could be estimated for [0001] oriented ZnO. Annealing measurements below room temperature show a significant recovery of the lattice starting at temperatures between 80 and 130 K for a sample implanted with low Er fluence. Samples with higher damage levels do not reveal any damage recovery up to room temperature, pointing to the formation of stable defect complexes.

111 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors performed a comprehensive first-principles investigation of point defects in ZnO based on density functional theory within the local density approximation (LDA) as well as the $\mathrm{LDA}+U$ approach for overcoming the band-gap problem.
Abstract: We have performed a comprehensive first-principles investigation of native point defects in ZnO based on density functional theory within the local density approximation (LDA) as well as the $\mathrm{LDA}+U$ approach for overcoming the band-gap problem. Oxygen deficiency, manifested in the form of oxygen vacancies and zinc interstitials, has long been invoked as the source of the commonly observed unintentional $n$-type conductivity in ZnO. However, contrary to the conventional wisdom, we find that native point defects are very unlikely to be the cause of unintentional $n$-type conductivity. Oxygen vacancies, which have most often been cited as the cause of unintentional doping, are deep rather than shallow donors and have high formation energies in $n$-type ZnO (and are therefore unlikely to form). Zinc interstitials are shallow donors, but they also have high formation energies in $n$-type ZnO and are fast diffusers with migration barriers as low as $0.57\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$; they are therefore unlikely to be stable. Zinc antisites are also shallow donors but their high formation energies (even in Zn-rich conditions) render them unlikely to be stable under equilibrium conditions. We have, however, identified a different low-energy atomic configuration for zinc antisites that may play a role under nonequilibrium conditions such as irradiation. Zinc vacancies are deep acceptors and probably related to the frequently observed green luminescence; they act as compensating centers in $n$-type ZnO. Oxygen interstitials have high formation energies; they can occur as electrically neutral split interstitials in semi-insulating and $p$-type materials or as deep acceptors at octahedral interstitial sites in $n$-type ZnO. Oxygen antisites have very high formation energies and are unlikely to exist in measurable concentrations under equilibrium conditions. Based on our results for migration energy barriers, we calculate activation energies for self-diffusion and estimate defect-annealing temperatures. Our results provide a guide to more refined experimental studies of point defects in ZnO and their influence on the control of $p$-type doping.

2,865 citations

Journal ArticleDOI
TL;DR: In this article, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed, focusing on demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers.
Abstract: Silicon carbide (SiC), a material long known with potential for high-temperature, high-power, high-frequency, and radiation hardened applications, has emerged as the most mature of the wide-bandgap (2.0 eV ≲ Eg ≲ 7.0 eV) semiconductors since the release of commercial 6HSiC bulk substrates in 1991 and 4HSiC substrates in 1994. Following a brief introduction to SiC material properties, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed. Emphasis is placed upon demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers. While individual device performances have been impressive (e.g. 4HSiC MESFETs with fmax of 42 GHz and over 2.8 W mm−1 power density; 4HSiC static induction transistors with 225 W power output at 600 MHz, 47% power added efficiency (PAE), and 200 V forward blocking voltage), material defects in SiC, in particular micropipe defects, remain the primary impediment to wide-spread application in commercial markets. Micropipe defect densities have been reduced from near the 1000 cm−2 order of magnitude in 1992 to 3.5 cm−2 at the research level in 1995.

1,249 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes.
Abstract: A common misconception is that the irradiation of solids with energetic electrons and ions has exclusively detrimental effects on the properties of target materials. In addition to the well-known cases of doping of bulk semiconductors and ion beam nitriding of steels, recent experiments show that irradiation can also have beneficial effects on nanostructured systems. Electron or ion beams may serve as tools to synthesize nanoclusters and nanowires, change their morphology in a controllable manner, and tailor their mechanical, electronic, and even magnetic properties. Harnessing irradiation as a tool for modifying material properties at the nanoscale requires having the full microscopic picture of defect production and annealing in nanotargets. In this article, we review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes. We also consider the t...

905 citations

Journal ArticleDOI
TL;DR: Based on the effective medium approximation and the fractal theory for the description of nanoparticle cluster and its radial distribution, a method for modeling the effective thermal conductivity of "nanofluid" is established as discussed by the authors.

762 citations

Journal ArticleDOI
TL;DR: Detailed and unambiguous simulation evidence is provided that the transition in supercooled liquid silicon, in the Stillinger–Weber potential18, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar10.
Abstract: Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4–4, 3–5 and 2–6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions1,2. On the other hand, its liquid form has much in common, thermodynamically, with water and other ‘tetrahedral network’ liquids that show density maxima3,4,5,6,7. Proper study of the ‘liquid–amorphous transition’, documented for non-crystalline silicon by both experimental and computer simulation studies8,9,10,11,12,13,14,15,16,17, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger–Weber potential18, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar10. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction3 that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.

518 citations