Author
Wesley De Neve
Other affiliations: KAIST, Information and Communications University
Bio: Wesley De Neve is an academic researcher from Ghent University. The author has contributed to research in topics: Scalable Video Coding & Bitstream. The author has an hindex of 22, co-authored 179 publications receiving 1941 citations. Previous affiliations of Wesley De Neve include KAIST & Information and Communications University.
Topics: Scalable Video Coding, Bitstream, Deep learning, Folksonomy, XML
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A semisupervised system that detects 10 types of named entities that achieved the fourth position in the final ranking, without using any kind of hand-crafted features such as lexical features or gazetteers.
Abstract: Due to the short and noisy nature of Twitter microposts, detecting named entities is often a cumbersome task. As part of the ACL2015 Named Entity Recognition (NER) shared task, we present a semisupervised system that detects 10 types of named entities. To that end, we leverage 400 million Twitter microposts to generate powerful word embeddings as input features and use a neural network to execute the classification. To further boost the performance, we employ dropout to train the network and leaky Rectified Linear Units (ReLUs). Our system achieved the fourth position in the final ranking, without using any kind of hand-crafted features such as lexical features or gazetteers.
189 citations
[...]
TL;DR: This paper proposes a novel method for unsupervised and content-based hashtag recommendation for tweets that relies on Latent Dirichlet Allocation (LDA) to model the underlying topic assignment of language classified tweets.
Abstract: Since the introduction of microblogging services, there has been a continuous growth of short-text social networking on the Internet. With the generation of large amounts of microposts, there is a need for effective categorization and search of the data. Twitter, one of the largest microblogging sites, allows users to make use of hashtags to categorize their posts. However, the majority of tweets do not contain tags, which hinders the quality of the search results. In this paper, we propose a novel method for unsupervised and content-based hashtag recommendation for tweets. Our approach relies on Latent Dirichlet Allocation (LDA) to model the underlying topic assignment of language classified tweets. The advantage of our approach is the use of a topic distribution to recommend general hashtags.
183 citations
[...]
TL;DR: This paper discusses a privacy-protected video surveillance system that makes use of JPEG extended range (JPEG XR), and demonstrates that subband-adaptive scrambling is able to conceal privacy-sensitive face regions with a feasible level of protection.
Abstract: This paper discusses a privacy-protected video surveillance system that makes use of JPEG extended range (JPEG XR). JPEG XR offers a low-complexity solution for the scalable coding of high-resolution images. To address privacy concerns, face regions are detected and scrambled in the transform domain, taking into account the quality and spatial scalability features of JPEG XR. Experiments were conducted to investigate the performance of our surveillance system, considering visual distortion, bit stream overhead, and security aspects. Our results demonstrate that subband-adaptive scrambling is able to conceal privacy-sensitive face regions with a feasible level of protection. In addition, our results show that subband-adaptive scrambling of face regions outperforms subband-adaptive scrambling of frames in terms of coding efficiency, except when low video bit rates are in use.
77 citations
[...]
TL;DR: A feature learning approach for hyperspectral image classification based on convolutional neural networks (CNNs) that is able to learn structured features, roughly resembling different spectral band-pass filters, directly from the hyperspectrals input data.
Abstract: Hyperspectral image (HSI) classification is one of the most widely used methods for scene analysis from hyperspectral imagery. In the past, many different engineered features have been proposed for the HSI classification problem. In this paper, however, we propose a feature learning approach for hyperspectral image classification based on convolutional neural networks (CNNs). The proposed CNN model is able to learn structured features, roughly resembling different spectral band-pass filters, directly from the hyperspectral input data. Our experimental results, conducted on a commonly-used remote sensing hyperspectral dataset, show that the proposed method provides classification results that are among the state-of-the-art, without using any prior knowledge or engineered features.
74 citations
[...]
TL;DR: This paper investigates the use of micro-Doppler signatures retrieved from a low-power radar device to identify a set of persons based on their gait characteristics and proposes a robust feature learning approach based on deep convolutional neural networks.
Abstract: Contemporary surveillance systems mainly use video cameras as their primary sensor. However, video cameras possess fundamental deficiencies, such as the inability to handle low-light environments, poor weather conditions, and concealing clothing. In contrast, radar devices are able to sense in pitch-dark environments and to see through walls. In this paper, we investigate the use of micro-Doppler (MD) signatures retrieved from a low-power radar device to identify a set of persons based on their gait characteristics. To that end, we propose a robust feature learning approach based on deep convolutional neural networks. Given that we aim at providing a solution for a real-world problem, people are allowed to walk around freely in two different rooms. In this setting, the IDentification with Radar data data set is constructed and published, consisting of 150 min of annotated MD data equally spread over five targets. Through experiments, we investigate the effectiveness of both the Doppler and time dimension, showing that our approach achieves a classification error rate of 24.70% on the validation set and 21.54% on the test set for the five targets used. When experimenting with larger time windows, we are able to further lower the error rate.
68 citations
Cited by
More filters
[...]
TL;DR: An end-to-end framework for the dense, pixelwise classification of satellite imagery with convolutional neural networks (CNNs) and design a multiscale neuron module that alleviates the common tradeoff between recognition and precise localization is proposed.
Abstract: We propose an end-to-end framework for the dense, pixelwise classification of satellite imagery with convolutional neural networks (CNNs). In our framework, CNNs are directly trained to produce classification maps out of the input images. We first devise a fully convolutional architecture and demonstrate its relevance to the dense classification problem. We then address the issue of imperfect training data through a two-step training approach: CNNs are first initialized by using a large amount of possibly inaccurate reference data, and then refined on a small amount of accurately labeled data. To complete our framework, we design a multiscale neuron module that alleviates the common tradeoff between recognition and precise localization. A series of experiments show that our networks consider a large amount of context to provide fine-grained classification maps.
651 citations
[...]
01 Jan 2004
TL;DR: A new algorithm for manifold learning and nonlinear dimensionality reduction is presented based on a set of unorganized da-ta points sampled with noise from a parameterized manifold, and the local geometry of the manifold is learned by constructing an approxi-mation for the tangent space at each point.
Abstract: We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized da-ta points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approxi-mation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data pointswith respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can bequite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimension-al Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements.
601 citations
[...]
TL;DR: A feature learning model for condition monitoring based on convolutional neural networks is proposed to autonomously learn useful features for bearing fault detection from the data itself and significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier.
Abstract: Vibration analysis is a well-established technique for condition monitoring of rotating machines as the vibration patterns differ depending on the fault or machine condition. Currently, mainly manually-engineered features, such as the ball pass frequencies of the raceway, RMS, kurtosis an crest, are used for automatic fault detection. Unfortunately, engineering and interpreting such features requires a significant level of human expertise. To enable non-experts in vibration analysis to perform condition monitoring, the overhead of feature engineering for specific faults needs to be reduced as much as possible. Therefore, in this article we propose a feature learning model for condition monitoring based on convolutional neural networks. The goal of this approach is to autonomously learn useful features for bearing fault detection from the data itself. Several types of bearing faults such as outer-raceway faults and lubrication degradation are considered, but also healthy bearings and rotor imbalance are included. For each condition, several bearings are tested to ensure generalization of the fault-detection system. Furthermore, the feature-learning based approach is compared to a feature-engineering based approach using the same data to objectively quantify their performance. The results indicate that the feature-learning system, based on convolutional neural networks, significantly outperforms the classical feature-engineering based approach which uses manually engineered features and a random forest classifier. The former achieves an accuracy of 93.61 percent and the latter an accuracy of 87.25 percent.
585 citations
[...]
TL;DR: Methods for video structure analysis, including shot boundary detection, key frame extraction and scene segmentation, extraction of features including static key frame features, object features and motion features, video data mining, video annotation, and video retrieval including query interfaces are analyzed.
Abstract: Video indexing and retrieval have a wide spectrum of promising applications, motivating the interest of researchers worldwide. This paper offers a tutorial and an overview of the landscape of general strategies in visual content-based video indexing and retrieval, focusing on methods for video structure analysis, including shot boundary detection, key frame extraction and scene segmentation, extraction of features including static key frame features, object features and motion features, video data mining, video annotation, video retrieval including query interfaces, similarity measure and relevance feedback, and video browsing. Finally, we analyze future research directions.
558 citations