scispace - formally typeset
Search or ask a question
Author

Wilfred W. Li

Bio: Wilfred W. Li is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Grid computing & Grid. The author has an hindex of 21, co-authored 44 publications receiving 9584 citations. Previous affiliations of Wilfred W. Li include University of Southern California.

Papers
More filters
Journal ArticleDOI
TL;DR: The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps, and all of the motif-based tools are now implemented as web services via Opal.
Abstract: The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

7,733 citations

Journal ArticleDOI
TL;DR: The freely accessible web server and its architecture are described, and ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance are discussed.
Abstract: MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource (http://meme.nbcr.net) and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance.

2,216 citations

Journal ArticleDOI
TL;DR: A Web services framework for APBS and PDB2PQR is developed that enables the use of these software packages by users who do not have local access to the necessary amount of computational capabilities and increases the availability of electrostatics calculations on portable computing platforms.
Abstract: APBS and PDB2PQR are widely utilized free software packages for biomolecular electrostatics calculations. Using the Opal toolkit, we have developed a Web services framework for these software packages that enables the use of APBS and PDB2PQR by users who do not have local access to the necessary amount of computational capabilities. This not only increases accessibility of the software to a wider range of scientists, educators, and students but also increases the availability of electrostatics calculations on portable computing platforms. Users can access this new functionality in two ways. First, an Opal-enabled version of APBS is provided in current distributions, available freely on the web. Second, we have extended the PDB2PQR web server to provide an interface for the setup, execution, and visualization of electrostatic potentials as calculated by APBS. This web interface also uses the Opal framework which ensures the scalability needed to support the large APBS user community. Both of these resources are available from the APBS/PDB2PQR website: http://www.poissonboltzmann.org/.

245 citations

PatentDOI
TL;DR: This work uses AutoDock4 to screen the NCI diversity set against representative receptor ensembles extracted from explicitly solvated molecular dynamics simulations of the neuraminidase system, and redocked to the entire nonredundant receptor ensemble and rescored using the relaxed complex scheme.
Abstract: The embodiments provide compound that can bind to the avian influenza virus subtype H5N1 neuraminidase protein, as well as compositions, including pharmaceutical compositions comprising a subject compound. The embodiments further provide treatment methods, including methods of treating avian influenza.

206 citations

Journal ArticleDOI
TL;DR: It is shown that the 150-loop is able to open into significantly wider conformations than seen in the crystal structures, through explicitly solvated MD simulations of the apo and oseltamivir-bound forms of tetrameric N1.
Abstract: The emergence and continuing global spread of the highly virulent avian influenza H5N1 has raised concerns of a possible human pandemic. Several approved anti-influenza drugs effectively target the neuraminidase (NA), a surface glycoprotein that cleaves terminal sialic acid residues and facilitates the release of viral progeny from infected cells. The first crystal structures of group-1 NAs revealed that although the binding pose of oseltamivir was similar to that seen in previous crystallographic complexes, the 150-loop adopted a distinct conformation, opening a new cavity adjacent to the active site. Here we show that the 150-loop is able to open into significantly wider conformations than seen in the crystal structures, through explicitly solvated MD simulations of the apo and oseltamivir-bound forms of tetrameric N1. We find that motion in the 150-loop is coupled to motion in the neighboring 430-loop, which expands the active site cavity even further. Furthermore, in simulations of the oseltamivir-bou...

148 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps, and all of the motif-based tools are now implemented as web services via Opal.
Abstract: The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms—MAST, FIMO and GLAM2SCAN—allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm Tomtom. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and Tomtom), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

7,733 citations

Journal ArticleDOI
TL;DR: The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization, and a new plotting engine developed to maximum their interactive ability.

5,173 citations

Journal ArticleDOI
TL;DR: Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices, and provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats.
Abstract: Summary: A motif is a short DNA or protein sequence that contributes to the biological function of the sequence in which it resides. Over the past several decades, many computational methods have been described for identifying, characterizing and searching with sequence motifs. Critical to nearly any motif-based sequence analysis pipeline is the ability to scan a sequence database for occurrences of a given motif described by a position-specific frequency matrix. Results: We describe Find Individual Motif Occurrences (FIMO), a software tool for scanning DNA or protein sequences with motifs described as position-specific scoring matrices. The program computes a log-likelihood ratio score for each position in a given sequence database, uses established dynamic programming methods to convert this score to a P-value and then applies false discovery rate analysis to estimate a q-value for each position in the given sequence. FIMO provides output in a variety of formats, including HTML, XML and several Santa Cruz Genome Browser formats. The program is efficient, allowing for the scanning of DNA sequences at a rate of 3.5 Mb/s on a single CPU. Availability and Implementation: FIMO is part of the MEME Suite software toolkit. A web server and source code are available at

3,266 citations

Journal ArticleDOI
17 Apr 2018-Immunity
TL;DR: An extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA identifies six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis.

3,246 citations