scispace - formally typeset
Search or ask a question
Author

Wilfried Haeberli

Bio: Wilfried Haeberli is an academic researcher from University of Zurich. The author has contributed to research in topics: Glacier & Permafrost. The author has an hindex of 73, co-authored 275 publications receiving 17514 citations. Previous affiliations of Wilfried Haeberli include ETH Zurich & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: Permafrost degradation in steep bedrock can be strongly affected by percolating water in fractures and can lead to quick and deep development of thaw corridors along permafrost and potentially destabilize much greater volumes of rock than conduction would as discussed by the authors.
Abstract: Permafrost in steep bedrock is abundant in many cold-mountain areas, and its degradation can cause slope instability that is unexpected and unprecedented in location, magnitude, frequency, and timing. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructure. Permafrost in steep bedrock is an emerging field of research. Knowledge of rock temperatures, ice content, mechanisms of degradation, and the processes that link warming and destabilization is often fragmental. In this article we provide a review and discussion of existing literature and pinpoint important questions. Ice-filled joints are common in bedrock permafrost and possibly actively widened by ice segregation. Broad evidence of destabilization by warming permafrost exists despite problems of attributing individual events to this phenomenon with certainty. Convex topography such as ridges, spurs, and peaks is often subject to faster and deeper thaw than other areas. Permafrost degradation in steep bedrock can be strongly affected by percolating water in fractures. This degradation by advection is difficult to predict and can lead to quick and deepdevelopment of thaw corridors along fractures in permafrost and potentially destabilize much greater volumes of rock than conduction would. Although most research on steep bedrock permafrost originates from the Alps, it will likely gain importance in other geographic regions with mountain permafrost.

557 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe how outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure in the high mountain areas.
Abstract: Glacier lakes are a common phenomenon in high mountain areas. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. In severa...

465 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used digitized glacier outlines inferred from the 1973 inventory and Landsat Thematic Mapper (TM) satellite data from 1985 to 1999 to obtain area changes of about 930 Alpine glaciers.
Abstract: Analyses of multispectral satellite data indicate accelerated glacier decline around the globe since the 1980s. By using digitized glacier outlines inferred from the 1973 inventory and Landsat Thematic Mapper (TM) satellite data from 1985 to 1999, we obtained area changes of about 930 Alpine glaciers. The 18% area reduction as observed for the period 1985 to 1999 (−1.3% a⁻¹) corresponds to a seven times higher loss rate compared to the 1850–1973 decadal mean. Extrapolation of area change rates and cumulative mass balances to all Alpine glaciers yields a corresponding volume loss of about 25 km³ since 1973. Highly individual and non-uniform changes in glacier geometry (disintegration) indicate a massive down-wasting rather than a dynamic response to a changed climate. Our results imply stronger ongoing glacier retreat than assumed so far and a probable further enhancement of glacier disintegration by positive feedbacks.

460 citations

Journal ArticleDOI
TL;DR: In this article, a review paper examines thermal conditions (active layer and permafrost), internal composition (rock and ice components), kinematics and rheology of creeping perennially frozen slopes in cold mountain areas.
Abstract: This review paper examines thermal conditions (active layer and permafrost), internal composition (rock and ice components), kinematics and rheology of creeping perennially frozen slopes in cold mountain areas. The aim is to assemble current information about creep in permafrost and rock glaciers from diverse published sources into a single paper that will be useful in studies of the flow and deformation of subsurface ice and their surface manifestations not only on Earth, but also on Mars. Emphasis is placed on quantitative information from drilling, borehole measurements, geophysical soundings, photogrammetry, laboratory experiments, etc. It is evident that quantitative holistic treatment of permafrost creep and rock glaciers requires consideration of: (a) rock weathering, snow avalanches and rockfall, with grain-size sorting on scree slopes; (b) freezing processes and ice formation in scree at sub-zero temperatures containing abundant fine material as well as coarse-grained blocks; (c) coupled thermohydro-mechanical aspects of creep and failure processes in frozen rock debris; (d) kinematics of non-isotropic, heterogeneous and layered, ice-rich permafrost on slopes with long transport paths for coarse surface material from the headwall to the front and, in some cases, subsequent re-incorporation into an advancing rock glacier causing corresponding age inversion at

427 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

01 Jan 2000
TL;DR: Evidence from long-term monitoring studies suggests that the climate of the past few decades is anomalous compared with past climate variation, and that recent climatic and atmospheric trends are already affecting species physiology, distribution and phenology.
Abstract: he prospect that increases inatmospheric concentrationsof greenhouse gases willhave measurable effects on theearth’s climate over the next fewdecades has attracted a vastresearch effort. Climatologistshave faced two main challenges.The first has been to distinguishthe signal of human-induced cli-mate change from the noise ofinterannual and decadal naturalvariability. The second has been topredict probable climate scenariosfor the future. Climate monitoringover the past century and long-term reconstructions of climateover the past millennium indicatethat the earth is indeed warmingup (Fig. 1)

1,923 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the climate of the past few decades is anomalous compared with past climate variation, and that recent climatic and atmospheric trends are already affecting species physiology, distribution and phenology.
Abstract: Increasing greenhouse gas concentrations are expected to have significant impacts on the world's climate on a timescale of decades to centuries. Evidence from long-term monitoring studies is now accumulating and suggests that the climate of the past few decades is anomalous compared with past climate variation, and that recent climatic and atmospheric trends are already affecting species physiology, distribution and phenology.

1,852 citations

Journal ArticleDOI
TL;DR: The changes over the North Pacific have been well documented and have contributed to increases in temperatures across Alaska and much of western North America and to decreases in sea surface temperatures over the central North Pacific as mentioned in this paper.
Abstract: Large changes in the wintertime atmospheric circulation have occurred over the past two decades over the ocean basins of the Northern Hemisphere, and these changes have had a profound effect on regional distributions of surface temperature and precipitation. The changes over the North Pacific have been well documented and have contributed to increases in temperatures across Alaska and much of western North America and to decreases in sea surface temperatures over the central North Pacific. The variations over the North Atlantic are related to changes in the North Atlantic Oscillation (NAO). Over the past 130 years, the NAO has exhibited considerable variability at quasi-biennial and quasi-decadal time scales, and the latter have become especially pronounced the second half of this century. Since 1980, the NAO has tended to remain in one extreme phase and has accounted for a substantial part of the observed wintertime surface warming over Europe and downstream over Eurasia and cooling in the northwest Atlantic. Anomalies in precipitation, including dry wintertime conditions over southern Europe and the Mediterranean and wetter-than-normal conditions over northern Europe and Scandinavia since 1980, are also linked to the behavior of the NAO. Changes in the monthly mean flow over the Atlantic are accompanied by a northward shift in the storm tracks and associated synoptic eddy activity, and these changes help to reinforce and maintain the anomalous mean circulation in the upper troposphere. It is important that studies of trends in local climate records, such as those from high elevation sites, recognize the presence of strong regional patterns of change associated with phenomena like the NAO.

1,830 citations