scispace - formally typeset
Search or ask a question
Author

Wilhelm Schäfer

Bio: Wilhelm Schäfer is an academic researcher from University of Hamburg. The author has contributed to research in topics: Virulence & Candida albicans. The author has an hindex of 42, co-authored 101 publications receiving 6248 citations. Previous affiliations of Wilhelm Schäfer include Cornell University & University of Aberdeen.
Topics: Virulence, Candida albicans, Fusarium, Mutant, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that trichothecenes are not a virulence factor during infection through the fruit coat of Fusarium head blight, and the fungus is blocked by the development of heavy cell wall thickenings in the rachis node of Nandu wheat, a defense inhibited by the mycotoxin.
Abstract: Fusarium head blight epidemics of wheat and barley cause heavy economic losses to farmers due to yield decreases and production of mycotoxin that renders the grain useless for flour and malt products. No highly resistant cultivars are available at present. Hyphae of germinating fungal spores use different paths of infection: After germination at the extruded tip of an ovary, the hyphae travel along the epicarp in the space between the lemma and palea. Infection of the developing kernel proceeds through the epicarp, successively destroying the layers of the fruit coat and finally the starch and protein accumulating endosperm. Hyphae reaching the rachis proceed to apically located developing kernels. Using a constitutively green fluorescence protein-expressing Fusarium wild-type strain, and its knockout mutant, preventing trichothecene synthesis, we demonstrate that trichothecenes are not a virulence factor during infection through the fruit coat. In the absence of trichothecenes, the fungus is blocked by the development of heavy cell wall thickenings in the rachis node of Nandu wheat, a defense inhibited by the mycotoxin. In barley hyphae of both wild-type and the trichothecene knockout mutant, are inhibited at the rachis node and rachilla, limiting infection of adjacent florets through the phloem and along the surface of the rachis. Effective resistance to Fusarium head blight requires expression of genes that combat these different pathways of infection.

586 citations

Journal ArticleDOI
TL;DR: Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize, which allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase.
Abstract: Fusarium graminearum is the causal agent of the Fusarium head blight (FHB) and a destructive pathogen of cereals accounting for high grain yield losses especially on wheat and maize. Like other fungal pathogens, F. graminearum secretes various extracellular enzymes, which are hypothesized to be involved in host infection. Extracellular lipolytic activity of F. graminearum was strongly induced in culture by wheat germ oil; this allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase. Expression analysis indicated that FGL1 is induced by lipid-containing substrates and repressed by glucose. In planta, FGL1 transcription was detected 1 day post-infection of wheat spikes. The function of the FGL1 gene product was verified by specifically demonstrating lipase activity after expression in a heterologous host. Ebelactone B, a known lipase inhibitor, repressed the lipolytic activity of the enzyme. Disease severity was strongly reduced when wild-type conidia were supplemented with ebelactone B. Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize.

321 citations

Journal ArticleDOI
TL;DR: The data suggest that SAP1, SAP2, and SAP3 all contribute to the overall virulence of C. albicans and presumably all play important roles during disseminated infections.
Abstract: Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null mutants were similar to those of the isogenic wild-type parental strain (SC5314) in complex and defined media. In medium with protein as the sole source of nitrogen, sap1 and sap3 mutants grew with reduced growth rates but reached optical densities similar to those measured for SC5314. In contrast, sap2 null mutants tended to clump, grew poorly in this medium, and produced the lowest proteolytic activity. Addition of ammonium ions reversed such growth defects. These results support the view that Sap2 is the dominant isoenzyme. When sap1, sap2, and sap3 mutants were injected intravenously in guinea pigs and mice, the animals had increased survival rates compared to those of control animals infected with SC5314. However, reduction of proteolytic activity in vitro did not correlate directly with the extent of attenuation of virulence observed for all Sap-deficient mutants. These data suggest that SAP1, SAP2, and SAP3 all contribute to the overall virulence of C. albicans and presumably all play important roles during disseminated infections.

294 citations

Journal ArticleDOI
TL;DR: It is demonstrated that trichothecenes influence the virulence of F. graminearum in a highly complex manner, which is strongly host as well as moderately chemotype specific.
Abstract: SUMMARY Fusarium graminearum is the main causative agent of Fusarium head blight on small grain cereals and of ear rot on maize. The disease leads to dramatic yield losses and to an accumulation of mycotoxins. The most dominant F. graminearum mycotoxins are the trichothecenes, with deoxynivalenol and nivalenol being the most prevalent derivatives. To investigate the involvement of trichothecenes in the virulence of the pathogen, the gene coding for the initial enzyme of the trichothecene pathway was disrupted in three field isolates, differing in chemotype and in virulence. From each isolate three individual disruption mutants were tested for their virulence on wheat, barley and maize. Despite the different initial virulence of the three wild-type progenitor strains on wheat, all disruption mutants caused disease symptoms on the inoculated spikelet, but the symptoms did not spread into other spikelets. On barley, the trichothecene deficient mutants showed no significant difference compared to the wild-type strains: all were equally aggressive. On maize, mutants derived from the NIV-producing strain caused less disease than their wild-type progenitor strain, while mutants derived from DON-producing strains caused the same level of disease as their progenitor strains. These data demonstrate that trichothecenes influence the virulence of F. graminearum in a highly complex manner, which is strongly host as well as moderately chemotype specific.

269 citations

Journal ArticleDOI
TL;DR: It can be concluded that the reduced virulence of hypha-deficient mutants is not only due to the inability to form hyphae but also due to modified expression of the SAP genes normally associated with the hyphal morphology, particularly that encoded by SAP6.
Abstract: The ability to change between yeast and hyphal cells (dimorphism) is known to be a virulence property of the human pathogen Candida albicans. The pathogenesis of disseminated candidosis involves adhesion and penetration of hyphal cells from a colonized mucosal site to internal organs. Parenchymal organs, such as the liver and pancreas, are invaded by C. albicans wild-type hyphal cells between 4 and 24 h after intraperitoneal (i.p.) infection of mice. In contrast, a hypha-deficient mutant lacking the transcription factor Efg1 was not able to invade or damage these organs. To investigate whether this was due to the inability to undergo the dimorphic transition or due to the lack of hypha-associated factors, we investigated the role of secreted aspartic proteinases during tissue invasion and their association with the different morphologies of C. albicans. Wild-type cells expressed a distinct pattern of SAP genes during i.p. infections. Within the first 72 h after infection, SAP1, SAP2, SAP4, SAP5, SAP6, and SAP9 were the most commonly expressed proteinase genes. Sap1 to Sap3 antigens were found on yeast and hyphal cells, while Sap4 to Sap6 antigens were predominantly found on hyphal cells in close contact with host cells, in particular, eosinophilic leukocytes. Mutants lacking EFG1 had either noticeably reduced or higher expressed levels of SAP4 to SAP6 transcripts in vitro depending on the culture conditions. During infection, efg1 mutants had a strongly reduced ability to produce hyphae, which was associated with reduced levels of SAP4 to SAP6 transcripts. Mutants lacking SAP1 to SAP3 had invasive properties indistinguishable from those of wild-type cells. In contrast, a triple mutant lacking SAP4 to SAP6 showed strongly reduced invasiveness but still produced hyphal cells. When the tissue damage of liver and pancreas caused by single sap4, sap5, and sap6 and double sap4 and -6, sap5 and -6, and sap4 and -5 double mutants was compared to the damage caused by wild-type cells, all mutants which lacked functional SAP6 showed significantly reduced tissue damage. These data demonstrate that strains which produce hyphal cells but lack hypha-associated proteinases, particularly that encoded by SAP6, are less invasive. In addition, it can be concluded that the reduced virulence of hypha-deficient mutants is not only due to the inability to form hyphae but also due to modified expression of the SAP genes normally associated with the hyphal morphology.

265 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI

3,734 citations