scispace - formally typeset
Search or ask a question
Author

Wilhelm Warta

Bio: Wilhelm Warta is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Silicon & Carrier lifetime. The author has an hindex of 58, co-authored 258 publications receiving 20808 citations. Previous affiliations of Wilhelm Warta include University of Freiburg & University of Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: Green et al. as mentioned in this paper presented consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules, and guidelines for inclusion of results into these tables are outlined and new entries since July 2014 are reviewed.
Abstract: Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2014 are reviewed. URI: http://onlinelibrary.wiley.com/doi/10.1002/pip.2573/pdf [1] Authors: GREEN Martin A. EMERY Keith HISHIKAWA Y. WARTA W. DUNLOP Ewan Publication Year: 2015 Type: Articles in Journals

2,511 citations

Journal ArticleDOI
TL;DR: Green et al. as discussed by the authors provided guidelines for the inclusion of results into these tables, which not only provides an authoritative summary of the current state of the art but also encourages researchers to seek independent confir-mation of results and to report results on a standardised basis.
Abstract: Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells andmodulesarepresented.GuidelinesforinclusionofresultsintothesetablesareoutlinedandnewentriessinceJune2010arereviewed. Copyright # 2010 John Wiley & Sons, Ltd. KEYWORDSsolar cell efficiency; photovoltaic efficiency; energy conversion efficiency*CorrespondenceMartin A. Green, ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney 2052, Australia.E-mail: m.green@unsw.edu.auReceived 12 October 2010 1. INTRODUCTION Since January 1993, ‘Progress in Photovoltaics’ haspublished six monthly listings of the highest confirmedefficiencies for a range of photovoltaic cell and moduletechnologies [1–3]. By providing guidelines for theinclusion of results into these tables, this not only providesan authoritative summary of the current state of the art butalso encourages researchers to seek independent confir-mation of results and to report results on a standardisedbasis. In a recent version of these tables (Version 33) [2],results were updated to the new internationally acceptedreferencespectrum(IEC60904–3,Ed.2,2008),wherethiswas possible.Themostimportantcriterionforinclusionofresultsintothe tables is that they must have been measured by arecognised test centre listed elsewhere [1]. A distinction ismade between three different eligible areas: total area;aperture area and designated illumination area [1]. ‘Activearea’ efficiencies are not included. There are also certainminimum values of the area sought for the different devicetypes (above 0.05cm

786 citations


Cited by
More filters
Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Abstract: Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

7,018 citations

Journal ArticleDOI
TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Abstract: Within the space of a few years, hybrid organic–inorganic perovskite solar cells have emerged as one of the most exciting material platforms in the photovoltaic sector. This review describes the rapid progress that has been made in this area.

5,463 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations