scispace - formally typeset
Search or ask a question
Author

Will K. Reeves

Bio: Will K. Reeves is an academic researcher from Centers for Disease Control and Prevention. The author has contributed to research in topics: Bartonella & Ehrlichia. The author has an hindex of 23, co-authored 34 publications receiving 1651 citations. Previous affiliations of Will K. Reeves include Agricultural Research Service & Clemson University.

Papers
More filters
Journal ArticleDOI
TL;DR: To identify zoonotic agents carried by rats in Baltimore, Maryland, USA, live-trapped 201 rats during 2005–2006 and screened them for a panel of viruses, bacteria, and parasites.
Abstract: Norway rats (Rattus norvegicus) carry several zoonotic pathogens and because rats and humans live in close proximity in urban environments, there exists potential for transmission. To identify zoonotic agents carried by rats in Baltimore, Maryland, USA, we live-trapped 201 rats during 2005-2006 and screened them for a panel of viruses, bacteria, and parasites. Antibodies against Seoul virus (57.7%), hepatitis E virus (HEV, 73.5%), Leptospira interrogans (65.3%), Bartonella elizabethae (34.1%), and Rickettsia typhi (7.0%) were detected in Norway rats. Endoparasites, including Calodium hepatica (87.9%) and Hymenolepis sp. (34.4%), and ectoparasites (13.9%, primarily Laelaps echidninus) also were present. The risk of human exposure to these pathogens is a significant public health concern. Because these pathogens cause non-specific and often self-limiting symptoms in humans, infection in human populations is probably underdiagnosed.

164 citations

Journal ArticleDOI
TL;DR: To assess the presence of rickettsial pathogens in ticks from Egypt, ticks from domestic and peridomestic animals were collected between June 2002 and July 2003 and DNA extracts from 1019 ticks were tested for Anaplasma marginale, Coxiella burnetii, Rickettsia aeschlimannii, and four novel genotypes similar to “Anaplasma platys.”
Abstract: To assess the presence of rickettsial pathogens in ticks from Egypt, we collected ticks from domestic and peridomestic animals between June 2002 and July 2003. DNA extracts from 1019 ticks were tested, using PCR and sequencing, for Anaplasma spp., Bartonella spp., Coxiella burnetii, Ehrlichia spp., and Rickettsia spp. Ticks included: 29 Argas persicus, 10 Hyalomma anatolicum anatolicum, 55 Hyalomma anatolicum excavatum, 174 Hyalomma dromedarii, 2 Hyalomma impeltatum, 3 Hyalomma marginatum rufipes, 55 unidentified nymphal Hyalomma, 625 Rhipicephalus (Boophilus) annulatus, 49 Rhipicephalus sanguineus, and 17 Rhipicephalus turanicus. Ticks were collected predominantly (>80%) from buffalo, cattle, and camels, with smaller numbers from chicken and rabbit sheds, sheep, foxes, a domestic dog, a hedgehog, and a black rat. We detected Anaplasma marginale, Coxiella burnetii, Rickettsia aeschlimannii, and four novel genotypes similar to: “Anaplasma platys,” Ehrlichia canis, Ehrlichia spp. reported from Asian ticks, and a Rickettsiales endosymbiont of Ixodes ricinus.

145 citations

Journal ArticleDOI
TL;DR: Serologic surveys in Egypt have documented human and animal exposure to vector-borne bacterial pathogens, but the presence and distribution of these agents in arthropods has not been determined and fleas were collected from mammals trapped in 17 cities throughout Egypt.
Abstract: Serologic surveys in Egypt have documented human and animal exposure to vector-borne bacterial pathogens, but the presence and distribution of these agents in arthropods has not been determined. Between July 2002 and July 2003, fleas were collected from 221 mammals trapped in 17 cities throughout Egypt. A total of 987 fleas were collected, representing four species (Ctenocephalides felis, Echidnophaga gallinacea, Leptopsylla segnis, and Xenopsylla cheopis); 899 of these fleas were X. cheopis from rats (Rattus spp.). Fleas were tested for DNA from Anaplasma spp., Bartonella spp., Coxiella burnetii, Ehrlichia spp., Rickettsia spp., and Yersinia pestis. Rickettsia typhi, the agent of murine typhus, was detected in X. cheopis and L. segnis from rats from nine cities. A spotted-fever group Rickettsia sp. similar to "RF2125" was detected in E. gallinacea, and two unidentified spotted fever group Rickettsia were detected in two X. cheopis. Novel Bartonella genotypes were detected in X. cheopis and L. segnis from three cities. Coxiella burnetii was detected in two fleas. Anaplasma, Ehrlichia, and Y. pestis were not detected.

142 citations

Journal ArticleDOI
TL;DR: Rickettsia parkeri was detected in ticks from Florida, Georgia, Kentucky, Mississippi, Oklahoma, and South Carolina, which suggests that A. maculatum may be responsible for additional cases of R. parkeri rickettsiosis throughout much of its US range.
Abstract: Geographic distribution of Rickettsia parkeri in its US tick vector, Amblyomma maculatum, was evaluated by PCR. R. parkeri was detected in ticks from Florida, Georgia, Kentucky, Mississippi, Oklahoma, and South Carolina, which suggests that A. maculatum may be responsible for additional cases of R. parkeri rickettsiosis throughout much of its US range.

130 citations

Journal ArticleDOI
TL;DR: DNA from the Coxiella and two undescribed Rickettsia were detected in unfed larvae that emerged in the laboratory, which implies these agents are transmitted vertically by female ticks.
Abstract: Argasid ticks are vectors of viral and bacterial agents of humans and animals. Carios capensis, a tick of seabirds, infests the nests of brown pelicans, Pelecanus occidentalis, and other ground nesting birds along the coast of South Carolina. This tick is associated with pelican nest abandonment and could pose a threat to humans visiting pelican rookeries if visitors are exposed to ticks harboring infectious agents. We collected ticks from a pelican rookery on Deveaux Bank, South Carolina and screened 64 individual ticks, six pools of larvae, and an egg mass for DNA from Bartonella, Borrelia, Coxiella, and Rickettsia by polymerase chain reaction amplification and sequencing. Ticks harbored DNA from “Borrelia lonestari”, a novel Coxiella sp., and three species of Rickettsia, including Rickettsia felis and two undescribed Rickettsia spp. DNA from the Coxiella and two undescribed Rickettsia were detected in unfed larvae that emerged in the laboratory, which implies these agents are transmitted vertically by female ticks. We partially characterize the novel Coxiella by molecular means.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current knowledge on tick-borne rickettsiae and ricksettsioses is presented using a geographic approach toward the epidemiology of these diseases.
Abstract: Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases.

1,016 citations

Journal ArticleDOI
TL;DR: A large number of pathogens that are directly or indirectly transmitted by rodents are described and a simplified rodent disease model is discussed.
Abstract: Rodents are the most abundant and diversified order of living mammals in the world. Already since the Middle Ages we know that they can contribute to human disease, as black rats were associated with distribution of plague. However, also in modern times rodents form a threat for public health. In this review article a large number of pathogens that are directly or indirectly transmitted by rodents are described. Moreover, a simplified rodent disease model is discussed.

757 citations

Journal ArticleDOI
01 Aug 2001-Ecology
TL;DR: This book discusses the natural heritage of the United States through the lens of species diversity, state diversity, endemism, and Rarity, and the role of government and non-governmental agencies in promoting and protecting these species.
Abstract: Foreword Preface Contributors Participating Institutions Acknowledgements 1. Biodiversity: Our Precious Heritage 2. Discovering Life in America: Tools and Techniques of Biodiversity Inventory 3. A Remarkable Array: Species Diversity in the United States 4. Conservation Status of U.S. Species 5. State of the States: Geographic Patterns of Diversity, Rarity, and Endemism 6. The Geography of Imperilment: Targeting Conservation towards Critical Biodiversity Areas 7. More than the Sum of the Parts: Diversity and Status of Ecological Systems 8. Leading Threats to U.S. Biodiversity: What's Threatening Imperiled Species 9. Strategies for Biodiversity Protection 10. Owning Up to Our Responsibilities: Who Owns Lands Important for Biodiversity? 11. Safeguarding Our Precious Heritage Appendix A: Extinct and missing species of the United States Appendix B: State Diversity, Endemism, and Rarity Appendix C: Kuchler Potential Natural Vegetation Types Appendix D: Principal Sources for the Natural Heritage Central Databases Literature Cited

526 citations

Journal ArticleDOI
13 May 2016
TL;DR: The CDC Rickettsial Zoonoses Branch developed this report to assist health care providers and public health professionals to recognize key epidemiologic features and clinical manifestations of tickborne rickettsial diseases, and understand that early empiric antibacterial therapy can prevent severe disease and death.
Abstract: Tickborne rickettsial diseases continue to cause severe illness and death in otherwise healthy adults and children, despite the availability of low-cost, effective antibacterial therapy. Recognition early in the clinical course is critical because this is the period when antibacterial therapy is most effective. Early signs and symptoms of these illnesses are nonspecific or mimic other illnesses, which can make diagnosis challenging. Previously undescribed tickborne rickettsial diseases continue to be recognized, and since 2004, three additional agents have been described as causes of human disease in the United States: Rickettsia parkeri, Ehrlichia muris-like agent, and Rickettsia species 364D. This report updates the 2006 CDC recommendations on the diagnosis and management of tickborne rickettsial diseases in the United States and includes information on the practical aspects of epidemiology, clinical assessment, treatment, laboratory diagnosis, and prevention of tickborne rickettsial diseases. The CDC Rickettsial Zoonoses Branch, in consultation with external clinical and academic specialists and public health professionals, developed this report to assist health care providers and public health professionals to 1) recognize key epidemiologic features and clinical manifestations of tickborne rickettsial diseases, 2) recognize that doxycycline is the treatment of choice for suspected tickborne rickettsial diseases in adults and children, 3) understand that early empiric antibacterial therapy can prevent severe disease and death, 4) request the appropriate confirmatory diagnostic tests and understand their usefulness and limitations, and 5) report probable and confirmed cases of tickborne rickettsial diseases to public health authorities.

365 citations