scispace - formally typeset
Search or ask a question
Author

William A. Catterall

Bio: William A. Catterall is an academic researcher from University of Washington. The author has contributed to research in topics: Sodium channel & Voltage-dependent calcium channel. The author has an hindex of 154, co-authored 536 publications receiving 83561 citations. Previous affiliations of William A. Catterall include University of Würzburg & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined.
Abstract: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined in this

7,389 citations

Journal ArticleDOI
TL;DR: The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca('s 2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca (2+) entry by second messenger pathways and interacting proteins.
Abstract: Voltage-gated Ca(2+) channels mediate Ca(2+) entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca(2+) currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca(2+) channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of approximately 190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide a flexible array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins.

2,330 citations

Journal ArticleDOI
TL;DR: The molecular relationships and physiological functions of these calcium channel proteins are presented and comprehensive information on their molecular, genetic, physiological, and pharmacological properties is provided.
Abstract: The family of voltage-gated sodium channels initiates action potentials in all types of excitable cells. Nine members of the voltage-gated sodium channel family have been characterized in mammals, and a 10th member has been recognized as a related protein. These distinct sodium channels have similar structural and functional properties, but they initiate action potentials in different cell types and have distinct regulatory and pharmacological properties. This article presents the molecular relationships and physiological roles of these sodium channel proteins and provides comprehensive information on their molecular, genetic, physiological, and pharmacological properties.

2,199 citations

Journal ArticleDOI
01 Apr 2000-Neuron
TL;DR: Together, these studies showed that the mechanisms of sodium channel function and regulation, purified sodium channel protein contained the essential and gives a perspective for future research on the ex-elements for ion conduction and voltage-dependent panding family of Sodium channel proteins.

2,022 citations

Journal ArticleDOI
01 Mar 2000-Neuron
TL;DR: The present alphabetical nomenclature does not reveal the structural relationships among the α1 subunits of Ca2+ channels, but it is apparent that these two alphabeticals will overlap at α1L, which may not mediate an L-type Ca2- current and therefore may create confusion.

1,481 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
31 Mar 1988-Nature
TL;DR: Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelins is an endogenous modulator of voltage-dependent ion channels.
Abstract: An endothelium-derived 21-residue vasoconstrictor peptide, endothelin, has been isolated, and shown to be one of the most potent vasoconstrictors known. Cloning and sequencing of preproendothelin complementary DNA shows that mature endothelin is generated through an unusual proteolytic processing, and regional homologies to a group of neurotoxins suggest that endothelin is an endogenous modulator of voltage-dependent ion channels. Expression of the endothelin gene is regulated by several vasoactive agents, indicating the existence of a novel cardiovascular control system.

10,651 citations

Journal ArticleDOI
TL;DR: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined.
Abstract: This issue of Pharmacological Reviews includes a new venture in the collaboration between the International Union of Pharmacology (IUPHAR) and the American Society for Pharmacology and Experimental Therapeutics (ASPET), in that a new classification of voltage-gated ion channels is outlined in this

7,389 citations

Journal ArticleDOI
TL;DR: Recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling.

5,568 citations

Journal ArticleDOI
18 Jul 1986-Science
TL;DR: A novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to the understanding of cell-to-cell communication.
Abstract: Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.

5,006 citations