scispace - formally typeset
Search or ask a question
Author

William A. Edelstein

Other affiliations: General Electric, Woodward, Inc., University of Aberdeen  ...read more
Bio: William A. Edelstein is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Electromagnetic coil & Pulse sequence. The author has an hindex of 46, co-authored 166 publications receiving 11203 citations. Previous affiliations of William A. Edelstein include General Electric & Woodward, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: Methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils are described, conceptually similar to phased array radar and ultrasound and hence the techniques are called the “NMR phased array.”
Abstract: We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the “NMR phased array.” The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 × 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 × 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine ( ∼ 7 cm). © 1990 Academic Press, Inc.

2,360 citations

Journal ArticleDOI
Abstract: Describes a new nuclear magnetic resonance (NMR) imaging technique which the authors call 'spin warp imaging' and gives examples of its application to human whole-body imaging. The apparatus is based on a four-coil, air cored magnet (made by the Oxford Instrument Company) capable of accepting the whole human body. The magnet produces a static field of 0.04 T giving a proton NMR frequency of 1.7 MHz. The maximum field inhomogeneity is about 6*10-4 at a radius of 0.23 m, approximately twice the amount theoretically attainable with this configuration. The pulse sequence used is shown.

817 citations

Journal ArticleDOI
TL;DR: Optimisation de lhomogeneite du champ radiofrequence necessaire pour produire des sequences d'impulsions a multichocs and du rapport signal sur bruit.

786 citations

Journal ArticleDOI
TL;DR: The intrinsic and system SNR is applied to predict image SNR and has found satisfactory agreement with measurements on images, which indicates that the initial choice of pixel size is crucial in NMR.
Abstract: The fundamental limit for NMR imaging is set by an intrinsic signal-to-noise ratio (SNR) for a particular combination of rf antenna and imaging subjects. The intrinsic SNR is the signal from a small volume of material in the sample competing with electrical noise from thermally generated, random noise currents in the sample. The intrinsic SNR has been measured for a number of antenna-body section combinations at several different values of the static magnetic field and is proportional to B0. We have applied the intrinsic and system SNR to predict image SNR and have found satisfactory agreement with measurements on images. The relationship between SNR and pixel size is quite different in NMR than it is with imaging modalities using ionizing radiation, and indicates that the initial choice of pixel size is crucial in NMR. The analog of "contrast-detail-dose" plots for ionizing radiation imaging modalities is the "contrast-detail-time" plot in NMR, which should prove useful in choosing a suitable pixel array to visualize a particular anatomical detail for a given NMR receiving antenna.

760 citations

Patent
17 Jun 1992
TL;DR: In this article, the authors proposed an in-situ method of extracting oil from a hydrocarbon bearing layer such as oil-shale or tar sands lying beneath a surface layer through a system of electrodes.
Abstract: An in-situ method of extracting oil from a hydrocarbon bearing layer such as oil-shale or tar sands lying beneath a surface layer comprises applying a radiofrequency excitation signal to the hydrocarbon bearing layer through a system of electrodes. The electrodes are inserted into a matrix of holes drilled through the surface layer and into the hydrocarbon bearing layer. A coaxial line extending through the surface layer is connected to the electrodes extending into the hydrocarbon bearing layer. The electrodes have a length that is an integral number of quarter wavelengths of the radiofrequency energy. A matching network connected between the coaxial cable and a respective one of the electrodes maximizes the power flow into each electrode. The electrodes are excited uniformly in rows and as a "balanced-line" RF array where adjacent rows of electrodes are 180° out of phase. This method does not produce substantial heating of the surface layer or the region surrounding the producing layer, and concentrates most of its power in the hydrocarbon bearing layer.

357 citations


Cited by
More filters
PatentDOI
TL;DR: The problem of image reconstruction from sensitivity encoded data is formulated in a general fashion and solved for arbitrary coil configurations and k‐space sampling patterns and special attention is given to the currently most practical case, namely, sampling a common Cartesian grid with reduced density.
Abstract: The invention relates to a method of parallel imaging for obtaining images by means of magnetic resonance (MR). The method includes the simultaneous measurement of sets of MR singals by an array of receiver coils, and the reconstruction of individual receiver coil images from the sets of MR signals. In order to reduce the acquisition time, the distance between adjacent phase encoding lines in k-space is increased, compared to standard Fourier imaging, by a non-integer factor smaller than the number of receiver coils. This undersampling gives rise to aliasing artifacts in the individual receiver coil images. An unaliased final image with the same field of view as in standard Fourier imaging is formed from a combination of the individual receiver coil images whereby account is taken of the mutually different spatial sensitivities of the receiver coils at the positions of voxels which in the receiver coil images become superimposed by aliasing. This requires the solution of a linear equation by means of the generalised inverse of a sensitivity matrix. The reduction of the number of phase encoding lines by a non-integer factor compared to standard Fourier imaging provides that different numbers of voxels become superimposed (by aliasing) in different regions of the receiver coil images. This effect can be exploited to shift residual aliasing artifacts outside the area of interest.

6,562 citations

Journal ArticleDOI
TL;DR: This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD‐AUTO‐SMASH reconstruction techniques and provides unaliased images from each component coil prior to image combination.
Abstract: In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate RF field map is not needed prior to reconstruction in GRAPPA. This information is obtained from several k-space lines which are acquired in addition to the normal image acquisition. As in PILS, the GRAPPA reconstruction algorithm provides unaliased images from each component coil prior to image combination. This results in even higher SNR and better image quality since the steps of image reconstruction and image combination are performed in separate steps. After introducing the GRAPPA technique, primary focus is given to issues related to the practical implementation of GRAPPA, including the reconstruction algorithm as well as analysis of SNR in the resulting images. Finally, in vivo GRAPPA images are shown which demonstrate the utility of the technique.

5,022 citations

Journal ArticleDOI
TL;DR: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present, and is applied at an early stage in an automated data analysis, before a tissue model is available.
Abstract: A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present. The method has the advantage that it can be applied at an early stage in an automated data analysis, before a tissue model is available. Described as nonparametric nonuniform intensity normalization (N3), the method is independent of pulse sequence and insensitive to pathological data that might otherwise violate model assumptions. To eliminate the dependence of the field estimate on anatomy, an iterative approach is employed to estimate both the multiplicative bias field and the distribution of the true tissue intensities. The performance of this method is evaluated using both real and simulated MR data.

4,613 citations

Journal ArticleDOI
TL;DR: The image intensity in magnetic resonance magnitude images in the presence of noise is shown to be governed by a Rician distribution and low signal intensities (SNR < 2) are therefore biased due to the noise.
Abstract: The image intensity in magnetic resonance magnitude images in the presence of noise is shown to be governed by a Rician distribution. Low signal intensities (SNR < 2) are therefore biased due to the noise. It is shown how the underlying noise can be estimated from the images and a simple correction scheme is provided to reduce the bias. The noise characteristics in phase images are also studied and shown to be very different from those of the magnitude images. Common to both, however, is that the noise distributions are nearly Gaussian for SNR larger than two.

2,425 citations

Journal ArticleDOI
TL;DR: Methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils are described, conceptually similar to phased array radar and ultrasound and hence the techniques are called the “NMR phased array.”
Abstract: We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the “NMR phased array.” The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 × 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 × 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine ( ∼ 7 cm). © 1990 Academic Press, Inc.

2,360 citations