scispace - formally typeset
Search or ask a question
Author

William A. Haseltine

Bio: William A. Haseltine is an academic researcher from Harvard University. The author has contributed to research in topics: Fusion protein & Nucleic acid. The author has an hindex of 7, co-authored 27 publications receiving 3694 citations. Previous affiliations of William A. Haseltine include Human Genome Sciences & GlaxoSmithKline.

Papers
More filters
Journal ArticleDOI
18 Mar 1994-Science
TL;DR: A search of a large database of expressed sequence tags derived from random complementary DNA clones revealed three additional human mismatch repair genes, all related to the bacterial mutL gene, demonstrating that this gene is responsible for HNPCC.
Abstract: Some cases of hereditary nonpolyposis colorectal cancer (HNPCC) are due to alterations in a mutS-related mismatch repair gene. A search of a large database of expressed sequence tags derived from random complementary DNA clones revealed three additional human mismatch repair genes, all related to the bacterial mutL gene. One of these genes (hMLH1) resides on chromosome 3p21, within 1 centimorgan of markers previously linked to cancer susceptibility in HNPCC kindreds. Mutations of hMLH1 that would disrupt the gene product were identified in such kindreds, demonstrating that this gene is responsible for the disease. These results suggest that defects in any of several mismatch repair genes can cause HNPCC.

1,903 citations

Journal ArticleDOI
01 Sep 1994-Nature
TL;DR: Two additional homologues of the prokaryotic mutL gene were found to be mutated in the germline of HNPCC patients, which doubles the number of genes implicated in H NPCC and may help explain the relatively high incidence of this disease.
Abstract: Hereditary nonpolyposis colorectal cancer (HNPCC) is one of man's commonest hereditary diseases. Several studies have implicated a defect in DNA mismatch repair in the pathogenesis of this disease. In particular, hMSH2 and hMLH1 homologues of the bacterial DNA mismatch repair genes mutS and mutL, respectively, were shown to be mutated in a subset of HNPCC cases. Here we report the nucleotide sequence, chromosome localization and mutational analysis of hPMS1 and hPMS2, two additional homologues of the prokaryotic mutL gene. Both hPMS1 and hPMS2 were found to be mutated in the germline of HNPCC patients. This doubles the number of genes implicated in HNPCC and may help explain the relatively high incidence of this disease.

1,587 citations

Patent
11 Feb 2004
TL;DR: The present invention encompasses albumin fusion proteins as mentioned in this paper, as well as vectors containing these nucleic acids, host cells transformed with the nucleic acid vectors, and methods of making the fusion proteins of the invention.
Abstract: The present invention encompasses albumin fusion proteins Nucleic acid molecules encoding the albumin fusion proteins of the invention are also encompassed by the invention, as are vectors containing these nucleic acids, host cells transformed with these nucleic acids vectors, and methods of making the albumin fusion proteins of the invention and using these nucleic acids, vectors, and/or host cells Additionally the present invention encompasses pharmaceutical compositions comprising albumin fusion proteins and methods of treating, preventing, or ameliorating diseases, disordrs or conditions using albumin fusion proteins of the invention

107 citations

Patent
06 Feb 1990
TL;DR: A packaging defective HIV vector is disclosed in this article, which can be used to establish HIV packaging defective cell lines, which can then be used in developing a vaccine, HIV antibodies and as part of a system for gene transfer.
Abstract: A packaging defective HIV vector is disclosed. This vector can be used to establish HIV packaging defective cell lines. These cell lines can be used in developing a vaccine, HIV antibodies and as part of a system for gene transfer.

46 citations

Patent
16 May 1991
TL;DR: In this article, immunogenic peptides containing amino acid residues which define a binding site to a CD4 receptor are disclosed and methods of reducing the ability of a gp120 env protein to bind to CD4 are also disclosed.
Abstract: Immunogenic peptides containing amino acid residues which define a binding site to a CD4 receptor are disclosed. Antibodies to these peptides are also disclosed. Methods of reducing the ability of a gp120 env protein to bind to CD4 are also disclosed. Methods of treatment and prophylaxis using these antibodies and peptides are also described.

37 citations


Cited by
More filters
Journal ArticleDOI
17 Dec 1998-Nature
TL;DR: There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels, and recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
Abstract: Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.

4,121 citations

01 Jan 2000
TL;DR: This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices, in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation.
Abstract: NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Sixty-third Session, Supplement No. 46. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. Scientific Annexes Annex A. Medical radiation exposures Annex B. Exposures of the public and workers from various sources of radiation INTROdUCTION 1. In the course of the research and development for and the application of atomic energy and nuclear technologies, a number of radiation accidents have occurred. Some of these accidents have resulted in significant health effects and occasionally in fatal outcomes. The application of technologies that make use of radiation is increasingly widespread around the world. Millions of people have occupations related to the use of radiation, and hundreds of millions of individuals benefit from these uses. Facilities using intense radiation sources for energy production and for purposes such as radiotherapy, sterilization of products, preservation of foodstuffs and gamma radiography require special care in the design and operation of equipment to avoid radiation injury to workers or to the public. Experience has shown that such technology is generally used safely, but on occasion controls have been circumvented and serious radiation accidents have ensued. 2. Reviews of radiation exposures from accidents have been presented in previous UNSCEAR reports. The last report containing an exclusive chapter on exposures from accidents was the UNSCEAR 1993 Report [U6]. 3. This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices. Its conclusions are to be seen in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation. 4. The Committee's evaluations of public, occupational and medical diagnostic exposures are mostly concerned with chronic exposures of …

3,924 citations

Journal Article
TL;DR: The p53 tumor suppressor gene has become a paradigm in cancer research because it is commonly mutated in human cancer and the spectrum of p53 mutations in these cancers is providing clues to the etiology and molecular pathogenesis of neoplasia as discussed by the authors.
Abstract: The p53 tumor suppressor gene has come to the forefront of cancer research because it is commonly mutated in human cancer and the spectrum of p53 mutations in these cancers is providing clues to the etiology and molecular pathogenesis of neoplasia (1—3). Detection of p53 abnormalities may have diagnostic, prognostic, and therapeutic implications (4). The 15-year history of p53 investigations is a paradigm in cancer research, illustrating the convergence of previously parallel lines of basic, clinical, and epidemiological investigation and the rapid trans fer of research findings from the laboratory to the clinic. p53 is clearly a component in biochemical pathways central to human carcinogen esis; p53 protein alterations due to missense mutations and loss of p53 protein by nonsense or frameshift mutations provide a selective ad vantage for clonal expansion of preneoplastic and neoplastic cells (5). The potential for a missense mutation to cause loss of tumor suppres sor function and gain of oncogenic activity, i.e., to transform cells by two mechanisms, is one explanation for the commonality of p53 mutations in human cancer. Recent studies investigating the mecha nisms underlying the biological activity of p53 indicate that the protein is involved in gene transcription, DNA synthesis and repair, genomic plasticity, and programmed cell death (1—6).These complex biochemical processes are performed by multicomponent protein ma chines; therefore, it is not surprising that the p53 protein forms complexes with other cellular proteins (Fig. 1) and that some viral oncoproteins alter the functions of these machines by binding to p53 and perturbing its interaction with other cellular protein components. In this Perspective, we will focus on the origin of p.53 mutations, the mutational spectrum of p.53 in human cancers, and the hypotheses generated by the analysis of p53 mutations in premalignant and malignant cells. The interpretation ofp53 mutations in human cancers is based on observations of the patterns of DNA damage induced by chemical and physical mutagens in model systems. In this Introduc tion, we will review these data, which provide the background for many of the inferences drawn from p53 mutational analysis.

3,733 citations

Journal ArticleDOI
30 Sep 1994-Science
TL;DR: This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Genetics have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.

3,216 citations

Journal ArticleDOI
02 Jun 1995-Science
TL;DR: Human colon cancer cell lines with high rates of microsatellite instability were found to harbor mutations in the type II TGF-beta receptor (RII) gene, which links DNA repair defects with a specific pathway of tumor progression.
Abstract: Transforming growth factor-beta (TGF-beta) is a potent inhibitor of epithelial cell growth. Human colon cancer cell lines with high rates of microsatellite instability were found to harbor mutations in the type II TGF-beta receptor (RII) gene. Eight such examples, due to three different mutations, were identified. The mutations were clustered within small repeated sequences in the RII gene, were accompanied by the absence of cell surface RII receptors, and were usually associated with small amounts of RII transcript. RII mutation, by inducing the escape of cells from TGF-beta-mediated growth control, links DNA repair defects with a specific pathway of tumor progression.

2,386 citations