scispace - formally typeset
Search or ask a question
Author

William B. Latter

Bio: William B. Latter is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Planetary nebula & Spitzer Space Telescope. The author has an hindex of 40, co-authored 76 publications receiving 8272 citations. Previous affiliations of William B. Latter include Ames Research Center & National Radio Astronomy Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: The Multiband Imaging Photometer for Spitzer (MIPS) as discussed by the authors provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160?m and measurements of spectral energy distributions between 52 and 100?m at a spectral resolution of about 7%.
Abstract: The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.

2,370 citations

Journal ArticleDOI
TL;DR: The SAGE Legacy project as discussed by the authors performed a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; 7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160μm) instruments on board the Spitzer Space Telescope.
Abstract: We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.

779 citations

Journal ArticleDOI
TL;DR: MIPSGAL as discussed by the authors is a 278 deg^2 survey of the inner Galactic plane using the Multiband Infrared Photometer for Spitzer aboard the Spitzer Space Telescope.
Abstract: MIPSGAL is a 278 deg^2 survey of the inner Galactic plane using the Multiband Infrared Photometer for Spitzer aboard the Spitzer Space Telescope. The survey field was imaged in two passbands, 24 and 70 μm with resolutions of 6″ and 18″, respectively. The survey was designed to provide a uniform, well-calibrated and well-characterized data set for general inquiry of the inner Galactic plane and as a longer-wavelength complement to the shorter-wavelength Spitzer survey of the Galactic plane: Galactic Plane Infrared Mapping Survey Extraordinaire. The primary science drivers of the current survey are to identify all high-mass (M > 5 M⊙) protostars in the inner Galactic disk and to probe the distribution, energetics, and properties of interstellar dust in the Galactic disk. The observations were planned to minimize data artifacts due to image latents at 24 μm and to provide full coverage at 70 μm. Observations at ecliptic latitudes within 15° of the ecliptic plane were taken at multiple epochs to help reject asteroids. The data for the survey were collected in three epochs, 2005 September–October, 2006 April, and 2006 October with all of the data available to the public. The estimated point-source sensitivities of the survey are 2 and 75 mJy (3 σ) at 24 and 70 μm, respectively. Additional data processing was needed to mitigate image artifacts due to bright sources at 24 μm and detector responsivity variations at 70 μm due to the large dynamic range of the Galactic plane. Enhanced data products including artifact-mitigated mosaics and point-source catalogs are being produced with the 24 μm mosaics already publicly available from the NASA/IPAC Infrared Science Archive. Some preliminary results using the enhanced data products are described.

739 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the data reduction algorithms for the Multiband Imaging Photometer for Spitzer (MIPS) based on extensive preflight testing and modeling of the Si:As and Ge:Ga (70 and 160μm) arrays.
Abstract: We describe the data reduction algorithms for the Multiband Imaging Photometer for Spitzer (MIPS). These algorithms were based on extensive preflight testing and modeling of the Si:As (24 μm) and Ge:Ga (70 and 160 μm) arrays in MIPS and have been refined based on initial flight data. The behaviors we describe are typical of state‐of‐the‐art infrared focal planes operated in the low backgrounds of space. The Ge arrays are bulk photoconductors and therefore show a variety of artifacts that must be removed to calibrate the data. The Si array, while better behaved than the Ge arrays, does show a handful of artifacts that must also be removed to calibrate the data. The data reduction to remove these effects is divided into three parts. The first part converts the nondestructively read data ramps into slopes while removing artifacts with time constants of the order of the exposure time. The second part calibrates the slope measurements while removing artifacts with time constants longer than the exposu...

428 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined colors from 3.6 to 24 μm as a function of metallicity (O/H) for a sample of 34 galaxies and demonstrated that the shift is primarily due to a decrease in the 8 μm-to-24 μm color for metallicities between one-third and one-fifth of the solar value.
Abstract: We examine colors from 3.6 to 24 μm as a function of metallicity (O/H) for a sample of 34 galaxies. The galaxies range over 2 orders of magnitude in metallicity. They display an abrupt shift in the 8 μm-to-24 μm color for metallicities between one-third and one-fifth of the solar value. The mean 8-to-24 μm flux density ratio below and above 12 + log (O/H) = 8.2 is 0.08 ± 0.04 and 0.70 ± 0.53, respectively. We use mid-IR colors and spectroscopy to demonstrate that the shift is primarily due to a decrease in the 8 μm flux density, as opposed to an increase in the 24 μm flux density. This result is most simply interpreted as being due to a weakening at low metallicity of the mid-IR emission bands usually attributed to PAHs (polycyclic aromatic hydrocarbons) relative to the small-grain dust emission. However, existing empirical spectral energy distribution models cannot account for the observed short-wavelength (below 8 μm) colors of the low-metallicity galaxies merely by reducing the strength of the PAH features; some other emission source (e.g., hot dust) is required.

381 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Spitzer Space Telescope, NASA's great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit as mentioned in this paper.
Abstract: The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected, and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical, and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first 6 months of the Spitzer mission.

3,177 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Abstract: Over the past two decades, an avalanche of data from multiwavelength imaging and spectroscopic surveys has revolutionized our view of galaxy formation and evolution. Here we review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch. A consistent picture is emerging, whereby the star-formation rate density peaked approximately 3.5 Gyr after the Big Bang, at z~1.9, and declined exponentially at later times, with an e-folding timescale of 3.9 Gyr. Half of the stellar mass observed today was formed before a redshift z = 1.3. About 25% formed before the peak of the cosmic star-formation rate density, and another 25% formed after z = 0.7. Less than ~1% of today's stars formed during the epoch of reionization. Under the assumption of a universal initial mass function, the global stellar mass density inferred at any epoch matches reasonably well the time integral of all the preceding star-formation activity. The comoving rates of star formation and central black hole accretion follow a similar rise and fall, offering evidence for co-evolution of black holes and their host galaxies. The rise of the mean metallicity of the Universe to about 0.001 solar by z = 6, one Gyr after the Big Bang, appears to have been accompanied by the production of fewer than ten hydrogen Lyman-continuum photons per baryon, a rather tight budget for cosmological reionization.

3,104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: The Multiband Imaging Photometer for Spitzer (MIPS) as discussed by the authors provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160?m and measurements of spectral energy distributions between 52 and 100?m at a spectral resolution of about 7%.
Abstract: The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.

2,370 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculated IR emission spectra for dust heated by starlight, for mixtures of amorphous silicate and graphitic grains, including varying amounts of PAH particles.
Abstract: IR emission spectra are calculated for dust heated by starlight, for mixtures of amorphous silicate and graphitic grains, including varying amounts of PAH particles. The models are constrained to reproduce the average Milky Way extinction curve. The calculations include the effects of single-photon heating. Updated IR absorption properties for the PAHs are presented that are consistent with observed emission spectra, including those newly obtained by Spitzer. We find a size distribution for the PAHs giving emission band ratios consistent with the observed spectra of the Milky Way and other galaxies. Emission spectra are presented for a wide range of starlight intensities. We calculate how the efficiency of emission into different IR bands depends on PAH size; the strong 7.7 μm emission feature is produced mainly by PAH particles containing Umin. We present graphical procedures using Spitzer IRAC and MIPS photometry to estimate the parameters qPAH, Umin, and γ, the fraction fPDR of the dust luminosity coming from photodissociation regions with U > 100, and the total dust mass Mdust.

2,102 citations