scispace - formally typeset
Search or ask a question
Author

William Chuirazzi

Other affiliations: Ohio State University
Bio: William Chuirazzi is an academic researcher from Idaho National Laboratory. The author has contributed to research in topics: Neutron imaging & Neutron. The author has an hindex of 5, co-authored 13 publications receiving 874 citations. Previous affiliations of William Chuirazzi include Ohio State University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, single-crystal perovskite devices 2-3 mm thick exhibit 16.4% X-ray detection efficiency with sensitivity four times higher than α-Se detectors.
Abstract: Single-crystal perovskite devices 2–3 mm thick exhibit 16.4% X-ray detection efficiency with sensitivity four times higher than α-Se X-ray detectors.

1,136 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a possible use of perovskite-based devices for detection of charged particles and investigate the mechanism of fundamental charge transport inside perovsite crystals, which can be applied in basic scientific research, health physics, and environmental analysis.
Abstract: Methylammonium lead tribromide (MAPbBr3) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr3 single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10−3 cm2/V.

62 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase, and found that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca 14%).
Abstract: The performance degradation and durability of a Li-ion battery is a major concern when it is operated under radiation conditions, for instance, in deep space exploration, in high radiation field, or rescuing or sampling equipment in a post-nuclear accident scenario. This paper examines the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase. A 60 Co irradiator (34.3 krad/h) was used to provide 0.8, 4.1, and 9.8 Mrad dose to LiFePO 4 electrodes and 0.8, 1.6, and 5.7 Mrad to 1 M LiPF 6 in 1:1 wt% EC:DMC electrolytes. This study shows that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca. 14%). A significant battery capacity fade post irradiation was observed. The electrolyte also shows a darkened color a few weeks or months after irradiation. The discovery of this latent effect may be significant because a battery may degrade significantly even showing no sign of degradation immediately after exposure. We investigated electrolyte composition by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, and nuclear magnetic resonance spectroscopy prior and post irradiation. Polymerization reactions and HF formation are considered as the cause of the discoloration.

22 citations

Journal ArticleDOI
TL;DR: In this paper, an alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure.
Abstract: An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current–voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241 Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 µm at −550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated polyvinyl toluene (PVT) scintillators fabricated with different emitting dopants and optical configurations for fast neutron imaging and concluded that a PVT imaging screen with 2% Xylyl Flrpic emitter, configured with a black backing, provides the best quality fast neutron image of the SCINTillators tested.
Abstract: We evaluated polyvinyl toluene (PVT) scintillators fabricated with different emitting dopants and scintillator optical configurations for fast neutron imaging. A neutron imaging apparatus was constructed to study scintillators under MeV neutron exposure. PVT with 2% Xylyl Flrpic emitter was identified as the brightest. The addition of a black backing to the scintillator, compared with a specular reflector film backing, improved the resolution of the neutron image obtained with the PVT scintillator by about 2 ×. It is concluded that a PVT imaging screen with 2% Xylyl Flrpic, configured with a black backing, provides the best quality fast neutron image of the scintillators tested.

18 citations


Cited by
More filters
Journal ArticleDOI
27 Aug 2018-Nature
TL;DR: All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.
Abstract: The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1–3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination. All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.

1,064 citations

Journal ArticleDOI
TL;DR: Yang et al. modify the oxide based electron transporting layer with organic acid and obtain planar-type cells with high certified efficiency of 21.5% and decent stability and success in suppressing hysteresis and record efficiency for planars-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer.
Abstract: Even though the mesoporous-type perovskite solar cell (PSC) is known for high efficiency, its planar-type counterpart exhibits lower efficiency and hysteretic response. Herein, we report success in suppressing hysteresis and record efficiency for planar-type devices using EDTA-complexed tin oxide (SnO2) electron-transport layer. The Fermi level of EDTA-complexed SnO2 is better matched with the conduction band of perovskite, leading to high open-circuit voltage. Its electron mobility is about three times larger than that of the SnO2. The record power conversion efficiency of planar-type PSCs with EDTA-complexed SnO2 increases to 21.60% (certified at 21.52% by Newport) with negligible hysteresis. Meanwhile, the low-temperature processed EDTA-complexed SnO2 enables 18.28% efficiency for a flexible device. Moreover, the unsealed PSCs with EDTA-complexed SnO2 degrade only by 8% exposed in an ambient atmosphere after 2880 h, and only by 14% after 120 h under irradiation at 100 mW cm−2. The development of high efficiency planar-type perovskite solar cell has been lagging behind the mesoporous-type counterpart. Here Yang et al. modify the oxide based electron transporting layer with organic acid and obtain planar-type cells with high certified efficiency of 21.5% and decent stability.

972 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent advances and open challenges in the field of solution-processed photodetectors, examining the topic from both the materials and the device perspective and highlighting the potential of the synergistic combination of materials and device engineering.
Abstract: Efficient light detection is central to modern science and technology. Current photodetectors mainly use photodiodes based on crystalline inorganic elemental semiconductors, such as silicon, or compounds such as III–V semiconductors. Photodetectors made of solution-processed semiconductors — which include organic materials, metal-halide perovskites and quantum dots — have recently emerged as candidates for next-generation light sensing. They combine ease of processing, tailorable optoelectronic properties, facile integration with complementary metal–oxide–semiconductors, compatibility with flexible substrates and good performance. Here, we review the recent advances and the open challenges in the field of solution-processed photodetectors, examining the topic from both the materials and the device perspective and highlighting the potential of the synergistic combination of materials and device engineering. We explore hybrid phototransistors and their potential to overcome trade-offs in noise, gain and speed, as well as the rapid advances in metal-halide perovskite photodiodes and their recent application in narrowband filterless photodetection. Conventional photodetectors, made of crystalline inorganic semiconductors, are limited in terms of the compactness and sensitivity they can reach. Photodetectors based on solution-processed semiconductors combine ease of processing, tailorable optoelectronic properties and good performance, and thus hold potential for next-generation light sensing.

934 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of nanoscopic and macroscopic level measurements was used to show that ion migration in polycrystalline perovskites dominates through grain boundary (GBs).
Abstract: The efficiency of perovskite solar cells is approaching that of single-crystalline silicon solar cells despite the presence of a large grain boundary (GB) area in the polycrystalline thin films. Here, by using a combination of nanoscopic and macroscopic level measurements, we show that ion migration in polycrystalline perovskites dominates through GBs. Atomic force microscopy measurements reveal much stronger hysteresis both for photocurrent and dark-current at the GBs than on the grain interiors, which can be explained by faster ion migration at the GBs. The dramatically enhanced ion migration results in the redistribution of ions along the GBs after electric poling, in contrast to the intact grain area. The perovskite single-crystal devices without GBs show negligible current hysteresis and no ion-migration signal. The discovery of dominating ion migration through GBs in perovskites can lead to broad applications in many types of devices including photovoltaics, memristors, and ion batteries.

846 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes advances in understanding the unique physical properties of hybrid perovskites that enable the fabrication of high-efficiency solar cells with high open-circuit voltages, which is crucial for their further development towards commercialization.
Abstract: This Review summarizes advances in understanding the unique physical properties of hybrid perovskites that enable the fabrication of high-efficiency solar cells with high open-circuit voltages, which is crucial for their further development towards commercialization.

846 citations