scispace - formally typeset
Search or ask a question
Author

William D. Grant

Bio: William D. Grant is an academic researcher from University of Leicester. The author has contributed to research in topics: Halophile & Halorubrum. The author has an hindex of 53, co-authored 143 publications receiving 8806 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl, which helps them to survive and thrive inside halite (NaCl) crystals.
Abstract: Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods.

482 citations

Journal ArticleDOI
TL;DR: The minimal standards include information on the following characteristics: cell morphology; motility; pigmentation; the requirement for salt to prevent cell lysis; optimum NaCl and MgCl2 concentrations for growth and range of salt concentrations enabling growth; temperature and pH ranges for growth.
Abstract: In accordance with Recommendation 30b of the International Code of Nomenclature of Bacteria, which calls for the development of minimal standards for describing new species, we propose minimal standards for description of new taxa in the order Halobacteriales. The minimal standards include information on the following characteristics: cell morphology; motility; pigmentation; the requirement for salt to prevent cell lysis; optimum NaCl and MgCl2 concentrations for growth and range of salt concentrations enabling growth; temperature and pH ranges for growth; anaerobic growth in the presence of nitrate or arginine; acid production from a range of carbohydrates; ability to grow on single carbon sources; catalase and oxidase tests; hydrolysis of starch, casein, and Tween 80; sensitivity to different antibiotics; and polar lipids. The placement of a new taxon should be consistent with phylogeny, which is usually based on 16S rRNA nucleotide sequence information, and with DNA-DNA hybridization data in the case of descriptions of new species. This proposal has been endorsed by the members of the Subcommittee on the Taxonomy of Halobacteriaceae of the International Committee on Systematic Bacteriology.

419 citations

Journal ArticleDOI
TL;DR: Although present-day soda lakes are geologically quite recent, they have probably existed since archaean times, permitting the evolution of independent communities of alkaliphiles since an early period in the Earth's history.
Abstract: Soda lakes are highly alkaline extreme environments that form in closed drainage basins exposed to high evaporation rates. Because of the scarcity of Mg2+ and Ca2+ in the water chemistry, the lakes become enriched in CO3 2− and Cl−, with pHs in the range 8 to >12. Although there is a clear difference in prokaryotic communities between the hypersaline lakes where NaCl concentrations are >15% w/v and more dilute waters, i.e., NaCl concentrations about 5% w/v, photosynthetic primary production appears to be the basis of all nutrient recycling. In both the aerobic and anaerobic microbial communities the major trophic groups responsible for cycling of carbon and sulfur have in general been identified. Systematic studies have shown that the microbes are alkaliphilic and many represent separate lineages within accepted taxa, while others show no strong relationship to known prokaryotes. Although alkaliphiles are widespread it seems probable that these organisms, especially those unique to the hypersaline lakes, evolved separately within an alkaline environment. Although present-day soda lakes are geologically quite recent, they have probably existed since archaean times, permitting the evolution of independent communities of alkaliphiles since an early period in the Earth's history.

416 citations

Book
01 Jan 1998
TL;DR: Hyperthermophiles: Isolation, Classification and Properties (K. Stetter).
Abstract: Hyperthermophiles: Isolation, Classification and Properties (K. Stetter). Psychrophiles (N. Russell & T. Hamamoto). Empirical and Theoretical Aspects of Life at High Pressure in the Deep Sea (A. Yayanos). Halophiles (W. Grant, et al.). Acidophilic Microorganisms (P. Norris & D. Johnson). Alkaliphiles (K. Horikoshi). Alkaliphile Bioenergetics (D. Ivey, et al.). Extremophilic, Methanogenic Archaea and Their Adaptation Mechanisms (S. Ni & D. Boone). Reduction of Metal Cations and Oxyanions by Anaerobic and Metal-Resistant Microorganisms: Chemistry, Physiology, and Potential for the Control and Bioremediation of Toxic Metal Pollution (C. White & G. Gadd). Anaerobic Non-Methanogenic Extremophiles (L. Mermelstein & J. Zeikus). Organic Solvent Tolerance in Microorganisms (R. Aono & A. Inoue). Index.

332 citations

Journal ArticleDOI
TL;DR: Alkaliphilic Archaea were relatively closely related to members of the genera Natronococcus and Natronobacterium, and an anaerobic, thermophilic isolate has been assigned to a new genus within the Thermotogales.

289 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
17 Oct 2007-Nature
TL;DR: A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.
Abstract: A strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease.

4,730 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Abstract: Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.

3,232 citations

Journal ArticleDOI
TL;DR: This review concentrates on the remarkable thermostability of hyperthermophilic enzymes, and describes the biochemical and molecular properties of these enzymes, which are typically thermostable and optimally active at high temperatures.
Abstract: Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.

1,937 citations