scispace - formally typeset
Search or ask a question
Author

William D. Richards

Bio: William D. Richards is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Electrolyte & Ionic conductivity. The author has an hindex of 25, co-authored 43 publications receiving 9793 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Materials Project (www.materialsproject.org) is a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials as discussed by the authors.
Abstract: Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

6,566 citations

Journal ArticleDOI
TL;DR: The pymatgen library as mentioned in this paper is an open-source Python library for materials analysis that provides a well-tested set of structure and thermodynamic analyses relevant to many applications, and an open platform for researchers to collaboratively develop sophisticated analyses of materials data obtained both from first principles calculations and experiments.

2,364 citations

Journal ArticleDOI
TL;DR: In this article, the thermodynamics of formation of resistive interfacial phases are examined and the predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance.
Abstract: Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into high-performing batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained - in part because experimental evaluation of the interface can be very difficult. In this work, we develop a computational methodology to examine the thermodynamics of formation of resistive interfacial phases. The predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance. We calculate that thiophosphate electrolytes have especially high reactivity with high voltage cathodes and a narrow electrochemical stability window. We also find that a number of known electrolytes are not inherently stable but react in situ with the electrode to form passivating but ionically conducting barrier layers. A...

1,035 citations

Journal ArticleDOI
TL;DR: It is found that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors.
Abstract: Achieving a Li-ion conductivity in the solid state comparable to existing liquid electrolytes is challenging. A fundamental relationship between anion packing and ionic transport now reveals desirable structural attributes for Li-ion conductors.

1,029 citations

Journal ArticleDOI
TL;DR: In this paper, a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, was conducted to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases.
Abstract: The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.

538 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The Materials Project (www.materialsproject.org) is a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials as discussed by the authors.
Abstract: Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

6,566 citations

Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations