scispace - formally typeset
Search or ask a question
Author

William E. Balch

Bio: William E. Balch is an academic researcher from Scripps Health. The author has contributed to research in topics: Endoplasmic reticulum & Golgi apparatus. The author has an hindex of 95, co-authored 265 publications receiving 33532 citations. Previous affiliations of William E. Balch include Yale University & Washington University in St. Louis.


Papers
More filters
Journal ArticleDOI
TL;DR: The present study focuses on the development and outline of a new treatment based on 16-year-old ribonucleic acid, as well as evidence in support of the new taxonomic treatment.

2,745 citations

Journal ArticleDOI
15 Feb 2008-Science
TL;DR: The proteostasis network is described, a set of interacting activities that maintain the health of proteome and the organism that has the potential to ameliorate some of the most challenging diseases of this era.
Abstract: The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.

2,140 citations

Journal ArticleDOI
25 Jul 1980-Science
TL;DR: For the first time, a single experimental approach, 16S ribosomal RNA sequence characterization, has been used to develop an overview of phylogenetic relationships in the bacterial world as mentioned in this paper.
Abstract: For the first time a single experimental approach, 16S ribosomal RNA sequence characterization, has been used to develop an overview of phylogenetic relationships in the bacterial world. The techni...

1,358 citations

Journal ArticleDOI
TL;DR: It is proposed that small molecules can enhance proteostasis by binding to and stabilizing specific proteins (pharmacologic chaperones) or by increasing the protestasis network capacity (proteostasis regulators) and that such therapeutic strategies, including combination therapies, represent a new approach for treating a range of diverse human maladies.
Abstract: Many diseases appear to be caused by the misregulation of protein maintenance. Such diseases of protein homeostasis, or “proteostasis,” include loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer's, Parkinson's, and Huntington's disease). Proteostasis is maintained by the proteostasis network, which comprises pathways that control protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation. The decreased ability of the proteostasis network to cope with inherited misfolding-prone proteins, aging, and/or metabolic/environmental stress appears to trigger or exacerbate proteostasis diseases. Herein, we review recent evidence supporting the principle that proteostasis is influenced both by an adjustable proteostasis network capacity and protein folding energetics, which together determine the balance between folding efficiency, misfolding, protein degradation, and aggregation. We review how small molecules can enhance proteostasis by binding to a...

1,071 citations

Journal ArticleDOI
TL;DR: A greater understanding of the diverse physiological applications of this fold has the potential to provide a fresh perspective for the treatment of amyloid diseases.

975 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described in this paper.
Abstract: A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.

10,245 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: Amorphous metal alloys are employed in acoustic devices dependent upon the properties of low acoustic velocity and low attenuation, such as wire, strip and bulk delay lines.
Abstract: Because a natural entity “species” cannot be recognized as a group of strains that is genetically well separated from its phylogenetic neighbors, a pragmatic approach was taken to define a species by a polyphasic approach (L. G. Wayne, D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper, Int. J. Syst. Bacteriol. 37:463-464, 1987), in which a DNA reassociation value of about 70% plays a dominant role. With the establishment of rapid sequence analysis of 16S rRNA and the recognition of its potential to determine the phylogenetic position of any prokaryotic organism, the role of 16S rRNA similarities in the present species definition in bacteriology needs to be clarified. Comparative studies clearly reveal the limitations of the sequence analysis of this conserved gene and gene product in the determination of relationships at the strain level for which DNA-DNA reassociation experiments still constitute the superior method. Since today the primary structure of 16S rRNA is easier to determine than hybridization between DNA strands, the strength of the sequence analysis is to recognize the level at which DNA pairing studies need to be performed, which certainly applies to similarities of 97% and higher.

6,188 citations