scispace - formally typeset
Search or ask a question
Author

William E. Dietrich

Bio: William E. Dietrich is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Bedrock & Sediment. The author has an hindex of 107, co-authored 331 publications receiving 38500 citations. Previous affiliations of William E. Dietrich include Los Alamos National Laboratory & Planetary Science Institute.


Papers
More filters
Journal Article•DOI•
TL;DR: In this paper, a model for the topographic influence on shallow landslide initiation is developed by coupling digital terrain data with near-surface through flow and slope stability models, which predicts the degree of soil saturation in response to a steady state rainfall for topographic elements defined by the intersection of contours and flow tube boundaries.
Abstract: A model for the topographic influence on shallow landslide initiation is developed by coupling digital terrain data with near-surface through flow and slope stability models. The hydrologic model TOPOG (O'Loughlin, 1986) predicts the degree of soil saturation in response to a steady state rainfall for topographic elements defined by the intersection of contours and flow tube boundaries. The slope stability component uses this relative soil saturation to analyze the stability of each topographic element for the case of cohesionless soils of spatially constant thickness and saturated conductivity. The steady state rainfall predicted to cause instability in each topographic element provides a measure of the relative potential for shallow landsliding. The spatial distribution of critical rainfall values is compared with landslide locations mapped from aerial photographs and in the field for three study basins where high-resolution digital elevation data are available: Tennessee Valley in Marin County, California; Mettman Ridge in the Oregon Coast Range; and Split Creek on the Olympic Peninsula, Washington. Model predictions in each of these areas are consistent with spatial patterns of observed landslide scars, although hydrologic complexities not accounted for in the model (e.g., spatial variability of soil properties and bedrock flow) control specific sites and timing of debris flow initiation within areas of similar topographic control.

1,431 citations

Journal Article•DOI•
TL;DR: In this paper, the effects of size, density, shape, and roundness on the settling velocity of natural sediment were analyzed in terms of four non-dimensional parameters, namely, the dimensionless nominal diameter D*, W*, the Corey shape factor, and the Powers roundness index.
Abstract: Data from 14 previous experimental studies were used to develop an empirical equation that accounts for the effects of size, density, shape, and roundness on the settling velocity of natural sediment. This analysis was done in terms of four nondimensional parameters, namely, the dimensionless nominal diameter D*, the dimensionless settling velocity W*, the Corey shape factor, and the Powers roundness index. For high D* (large or dense particles), changes in roundness and shape factor have similar magnitude effects on settling velocity. Roundness varies much less for naturally occuring grains, however, and hence is a less important control than shape. For a typical coarse sand with a Powers roundness of 3.5 and a Corey shape factor of 0.7, the settling velocity is about 0.68 that of a sphere of the same D*, with shape and roundness effects contributing about equally to the settling velocity reduction. At low D* the reduction in settling velocity due to either shape or roundness is much less. Moreover, at low D*, low roundness causes a greater decrease in settling velocity at low shape factor values than at high shape factor values. This appears to be due to the increased surface drag on the flatter grains.

869 citations

Journal Article•DOI•
24 Jul 1997-Nature
TL;DR: The linear increase of detected photons as a function of laser intensity (100-2,000 W cm -2 ) indicated that saturation and multiphoton processes were negligible in these studies as discussed by the authors.
Abstract: ). The linear increase of detected photons as a function of laser intensity (100-2,000 W cm -2 ) indicated that saturation and multiphoton processes were negligible in these studies. Typical detected count rates of 5,000-6,000 photons s -1 at 2,000 W cm -2 pumping intensity (,150,000 excitations s -1 ) were achieved, with most of the molecules emitting several

795 citations

Journal Article•DOI•
24 Jan 2014-Science
TL;DR: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy.
Abstract: The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

770 citations

Journal Article•DOI•
TL;DR: In this paper, chemical, physical, and mechanical changes resulting from metasomatic hydrochemical processes are developed using mass balance models which formally link chemical composition to bulk density, mineral density, volumetric properties, porosity, and amount of deformation (strain).

768 citations


Cited by
More filters
Christopher M. Bishop1•
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal Article•DOI•
09 Aug 1996-Cell
TL;DR: The work from the authors' laboratories reviewed herein was supported by grants from the National Cancer Institute.

6,895 citations

Journal Article•DOI•

6,278 citations

Journal Article•DOI•
TL;DR: In this article, Naiman et al. pointed out that harnessing of streams and rivers comes at great cost: Many rivers no longer support socially valued native species or sustain healthy ecosystems that provide important goods and services.
Abstract: H umans have long been fascinated by the dynamism of free-flowing waters. Yet we have expended great effort to tame rivers for transportation, water supply, flood control, agriculture, and power generation. It is now recognized that harnessing of streams and rivers comes at great cost: Many rivers no longer support socially valued native species or sustain healthy ecosystems that provide important goods and services (Naiman et al. 1995, NRC 1992).

5,799 citations

Journal Article•DOI•
TL;DR: A survey of the dimensions and composition of the present continental crust is given in this paper, where it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons).
Abstract: A survey is given of the dimensions and composition of the present continental crust. The abundances of immobile elements in sedimentary rocks are used to establish upper crustal composition. The present upper crustal composition is attributed largely to intracrustal differentiation resulting in the production of granites senso lato. Underplating of the crust by ponded basaltic magmas is probably a major source of heat for intracrustal differentiation. The contrast between the present upper crustal composition and that of the Archean upper crust is emphasized. The nature of the lower crust is examined in the light of evidence from granulites and xenoliths of lower crustal origin. It appears that the protoliths of most granulite facies exposures are more representative of upper or middle crust and that the lower crust has a much more basic composition than the exposed upper crust. There is growing consensus that the crust grows episodically, and it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons, or 2.7 Ga). There appears to be a relationship between episodes of continental growth and differentiation and supercontinental cycles, probably dating back at least to the late Archean. However, such cycles do not explain the contrast in crustal compositions between Archean and post-Archean. Mechanisms for deriving the crust from the mantle are considered, including the role of present-day plate tectonics and subduction zones. It is concluded that a somewhat different tectonic regime operated in the Archean and was responsible for the growth of much of the continental crust. Archean tonalites and trond-hjemites may have resulted from slab melting and/or from melting of the Archean mantle wedge but at low pressures and high temperatures analogous to modern boninites. In contrast, most andesites and subduction-related rocks, now the main contributors to crustal growth, are derived ultimately from the mantle wedge above subduction zones. The cause of the contrast between the processes responsible for Archean and post-Archean crustal growth is attributed to faster subduction of younger, hotter oceanic crust in the Archean (ultimately due to higher heat flow) compared with subduction of older, cooler oceanic crust in more recent times. A brief survey of the causes of continental breakup reveals that neither plume nor lithospheric stretching is a totally satisfactory explanation. Speculations are presented about crustal development before 4000 m.y. ago. The terrestrial continental crust appears to be unique compared with crusts on other planets and satellites in the solar system, ultimately a consequence of the abundant free water on the Earth.

3,656 citations