scispace - formally typeset
Search or ask a question
Author

William E. Miller

Other affiliations: Duke University, Durham University, University of Cincinnati  ...read more
Bio: William E. Miller is an academic researcher from University of Cincinnati Academic Health Center. The author has contributed to research in topics: Signal transduction & G protein-coupled receptor. The author has an hindex of 36, co-authored 72 publications receiving 8935 citations. Previous affiliations of William E. Miller include Duke University & Durham University.


Papers
More filters
Journal ArticleDOI
29 Jan 1999-Science
TL;DR: Data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.
Abstract: The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the receptor. Src recruitment was mediated by beta-arrestin, which functions as an adapter protein, binding both c-Src and the agonist-occupied receptor. beta-Arrestin 1 mutants, impaired either in c-Src binding or in the ability to target receptors to clathrin-coated pits, acted as dominant negative inhibitors of beta2 adrenergic receptor-mediated activation of the MAP kinases Erk1 and Erk2. These data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.

1,451 citations

Journal ArticleDOI
TL;DR: The data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.
Abstract: Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

838 citations

Journal ArticleDOI
24 Nov 2000-Science
TL;DR: In this article, c-Jun amino-terminal kinase 3 (JNK3) was identified as a binding partner of β-arrestin 2 using a yeast two-hybrid screen and by coimmunoprecipitation from mouse brain extracts or cotransfected COS-7 cells.
Abstract: β-Arrestins, originally discovered in the context of heterotrimeric guanine nucleotide binding protein–coupled receptor (GPCR) desensitization, also function in internalization and signaling of these receptors. We identified c-Jun amino-terminal kinase 3 (JNK3) as a binding partner of β-arrestin 2 using a yeast two-hybrid screen and by coimmunoprecipitation from mouse brain extracts or cotransfected COS-7 cells. The upstream JNK activators apoptosis signal–regulating kinase 1 (ASK1) and mitogen-activated protein kinase (MAPK) kinase 4 were also found in complex with β-arrestin 2. Cellular transfection of β-arrestin 2 caused cytosolic retention of JNK3 and enhanced JNK3 phosphorylation stimulated by ASK1. Moreover, stimulation of the angiotensin II type 1A receptor activated JNK3 and triggered the colocalization of β-arrestin 2 and active JNK3 to intracellular vesicles. Thus, β-arrestin 2 acts as a scaffold protein, which brings the spatial distribution and activity of this MAPK module under the control of a GPCR.

836 citations

Journal ArticleDOI
25 Oct 2002-Science
TL;DR: It is shown that β-arrestins coordinate both processes by recruiting PDEs to activated β2-adrenergic receptors in the plasma membrane of mammalian cells by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rates of its degradation at the membrane.
Abstract: Catecholamines signal through the β 2 -adrenergic receptor by promoting production of the second messenger adenosine 3′,5′-monophosphate (cAMP). The magnitude of this signal is restricted by desensitization of the receptors through their binding to β-arrestins and by cAMP degradation by phosphodiesterase (PDE) enzymes. We show that β-arrestins coordinate both processes by recruiting PDEs to activated β 2 -adrenergic receptors in the plasma membrane of mammalian cells. In doing so, the β-arrestins limit activation of membrane-associated cAMP-activated protein kinase by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rate of its degradation at the membrane.

489 citations

Journal ArticleDOI
TL;DR: GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function, and RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.

406 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion.
Abstract: When epidermal growth factor and its relatives bind the ErbB family of receptors, they trigger a rich network of signalling pathways, culminating in responses ranging from cell division to death, motility to adhesion. The network is often dysregulated in cancer and lends credence to the mantra that molecular understanding yields clinical benefit: over 25,000 women with breast cancer have now been treated with trastuzumab (Herceptin), a recombinant antibody designed to block the receptor ErbB2. Likewise, small-molecule enzyme inhibitors and monoclonal antibodies to ErbB1 are in advanced phases of clinical testing. What can this pathway teach us about translating basic science into clinical use?

6,462 citations

Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
TL;DR: The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels, and that receptor-ligand specificity and feedback loops help to determine WNT signaling outputs.
Abstract: Tight control of cell-cell communication is essential for the generation of a normally patterned embryo. A critical mediator of key cell-cell signaling events during embryogenesis is the highly conserved Wnt family of secreted proteins. Recent biochemical and genetic analyses have greatly enriched our understanding of how Wnts signal, and the list of canonical Wnt signaling components has exploded. The data reveal that multiple extracellular, cytoplasmic, and nuclear regulators intricately modulate Wnt signaling levels. In addition, receptor-ligand specificity and feedback loops help to determine Wnt signaling outputs. Wnts are required for adult tissue maintenance, and perturbations in Wnt signaling promote both human degenerative diseases and cancer. The next few years are likely to see novel therapeutic reagents aimed at controlling Wnt signaling in order to alleviate these conditions.

5,129 citations

Journal ArticleDOI
08 Jun 2012-Cell
TL;DR: An update of the core Wnt/β-catenin signaling pathway is provided, how its various components contribute to disease, and outstanding questions to be addressed in the future are discussed.

4,561 citations

Journal ArticleDOI
06 Mar 2003-Nature
TL;DR: ‘Endocytosis’ encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane and must be viewed in a broader context than simple vesicular trafficking.
Abstract: The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. 'Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.

3,709 citations