scispace - formally typeset
Search or ask a question
Author

William G. Hunter

Bio: William G. Hunter is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Model building & Design of experiments. The author has an hindex of 31, co-authored 61 publications receiving 15065 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a design criterion that emphasizes model discrimination when there is considerable doubt as to which model is best and gradually shifts the emphasis to parameter estimation as experimentation progresses and discrimination is accomplished.
Abstract: Two objectives of much experimentation in science and engineering are (i) to establish the form of an adequate mathematical model for the system being investigated and (ii) to obtain precise estimates of the model parameters. In the past, statistical design procedures have been proposed for tackling either one of these problems separately. Investigators, however, frequently want to perform experiments which will shed light on both questions simultaneously. In this paper, therefore, we present a design criterion which takes both objectives into account. The basic design strategy is to emphasize model discrimination when there is considerable doubt as to which model is best and gradually shifting the emphasis to parameter estimation as experimentation progresses and discrimination is accomplished. It is assumed that experiments can be performed sequentially. The use of the design criterion is illustrated with an example.

123 citations

Journal ArticleDOI
TL;DR: In this article, a simple technique useful in iterative model-building is described, in which a statistical analysis is applied to the estimated parameters rather than to the observations directly, which can point out the source and nature of possible inadequacies and suggest what modifications are necessary for improvement.
Abstract: A simple technique useful in iterative model-building is described. In this a statistical analysis is applied to the estimated parameters rather than to the observations directly. This mode of procedure pinpoints the source and nature of possible inadequacies and these, interacting with the experimenter's special knowledge of the problem, can suggest what modifications are necessary for improvement. The cycle may be repeated till an adequate model, which should of course be checked by additional critical experiments, is found.

112 citations

Journal ArticleDOI
TL;DR: This paper considers the particular problem of transforming data from the viewpoint of several aspects of a problem or several criteria by re-examining some specific published examples.
Abstract: Modern computing equipment is extremely fast and can also provide graphical out-put. Prior to the computer era, problems were often formulated in terms of a single numerical criterion which could be handled conveniently on a desk calculator. Now several aspects of a problem or several criteria can be considered simultaneously and a more flexible attitude adopted. The situation then can often be easily understood by the experimenter, and compromise decisions can be made by him. In this paper we consider the particular problem of transforming data from this viewpoint by re-examining some specific published examples.

110 citations


Cited by
More filters
Book
21 Mar 2002
TL;DR: An essential textbook for any student or researcher in biology needing to design experiments, sample programs or analyse the resulting data is as discussed by the authors, covering both classical and Bayesian philosophies, before advancing to the analysis of linear and generalized linear models Topics covered include linear and logistic regression, simple and complex ANOVA models (for factorial, nested, block, split-plot and repeated measures and covariance designs), and log-linear models Multivariate techniques, including classification and ordination, are then introduced.
Abstract: An essential textbook for any student or researcher in biology needing to design experiments, sample programs or analyse the resulting data The text begins with a revision of estimation and hypothesis testing methods, covering both classical and Bayesian philosophies, before advancing to the analysis of linear and generalized linear models Topics covered include linear and logistic regression, simple and complex ANOVA models (for factorial, nested, block, split-plot and repeated measures and covariance designs), and log-linear models Multivariate techniques, including classification and ordination, are then introduced Special emphasis is placed on checking assumptions, exploratory data analysis and presentation of results The main analyses are illustrated with many examples from published papers and there is an extensive reference list to both the statistical and biological literature The book is supported by a website that provides all data sets, questions for each chapter and links to software

9,509 citations

Book
01 Jan 2015
TL;DR: This book offers a complete blueprint for structuring projects to achieve rapid completion with high engineering productivity during the research and development phase to ensure that high quality products can be made quickly and at the lowest possible cost.
Abstract: From the Publisher: Phadke was trained in robust design techniques by Genichi Taguchi, the mastermind behind Japanese quality manufacturing technologies and the father of Japanese quality control. Taguchi's approach is currently under consideration to be adopted as a student protocol with the US govrnment. The foreword is written by Taguchi. This book offers a complete blueprint for structuring projects to achieve rapid completion with high engineering productivity during the research and development phase to ensure that high quality products can be made quickly and at the lowest possible cost. Some topics covered are: orthogonol arrays, how to construct orthogonal arrays, computer-aided robutst design techniques, dynamic systems design methods, and more.

3,928 citations

Journal ArticleDOI
TL;DR: In this paper, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed.
Abstract: Fenton chemistry encompasses reactions of hydrogen peroxide in the presence of iron to generate highly reactive species such as the hydroxyl radical and possibly others. In this review, the complex mechanisms of Fenton and Fenton-like reactions and the important factors influencing these reactions, from both a fundamental and practical perspective, in applications to water and soil treatment, are discussed. The review covers modified versions including the photoassisted Fenton reaction, use of chelated iron, electro-Fenton reactions, and Fenton reactions using heterogeneous catalysts. Sections are devoted to nonclassical pathways, by-products, kinetics and process modeling, experimental design methodology, soil and aquifer treatment, use of Fenton in combination with other advanced oxidation processes or biodegradation, economic comparison with other advanced oxidation processes, and case studies.

3,218 citations

Journal ArticleDOI
TL;DR: In this paper, alternative formulations of Levene's test statistic for equality of variances are found to be robust under nonnormality, using more robust estimators of central location in place of the mean.
Abstract: Alternative formulations of Levene's test statistic for equality of variances are found to be robust under nonnormality. These statistics use more robust estimators of central location in place of the mean. They are compared with the unmodified Levene's statistic, a jackknife procedure, and a χ2 test suggested by Layard which are all found to be less robust under nonnormality.

2,559 citations

Book
01 Apr 2004
TL;DR: In this paper, the authors present a method for sensitivity analysis of a fish population model using Monte Carlo filtering and variance-based methods, which is based on the Bayesian uncertainty estimation.
Abstract: PREFACE. 1. A WORKED EXAMPLE. 1.1 A simple model. 1.2 Modulus version of the simple model. 1.3 Six--factor version of the simple model. 1.4 The simple model 'by groups'. 1.5 The (less) simple correlated--input model. 1.6 Conclusions. 2. GLOBAL SENSITIVITY ANALYSIS FOR IMPORTANCE ASSESSMENT. 2.1 Examples at a glance. 2.2 What is sensitivity analysis? 2.3 Properties of an ideal sensitivity analysis method. 2.4 Defensible settings for sensitivity analysis. 2.5 Caveats. 3. TEST CASES. 3.1 The jumping man. Applying variance--based methods. 3.2 Handling the risk of a financial portfolio: the problem of hedging. Applying Monte Carlo filtering and variance--based methods. 3.3 A model of fish population dynamics. Applying the method of Morris. 3.4 The Level E model. Radionuclide migration in the geosphere. Applying variance--based methods and Monte Carlo filtering. 3.5 Two spheres. Applying variance based methods in estimation/calibration problems. 3.6 A chemical experiment. Applying variance based methods in estimation/calibration problems. 3.7 An analytical example. Applying the method of Morris. 4. THE SCREENING EXERCISE. 4.1 Introduction. 4.2 The method of Morris. 4.3 Implementing the method. 4.4 Putting the method to work: an analytical example. 4.5 Putting the method to work: sensitivity analysis of a fish population model. 4.6 Conclusions. 5. METHODS BASED ON DECOMPOSING THE VARIANCE OF THE OUTPUT. 5.1 The settings. 5.2 Factors Prioritisation Setting. 5.3 First--order effects and interactions. 5.4 Application of Si to Setting 'Factors Prioritisation'. 5.5 More on variance decompositions. 5.6 Factors Fixing (FF) Setting. 5.7 Variance Cutting (VC) Setting. 5.8 Properties of the variance based methods. 5.9 How to compute the sensitivity indices: the case of orthogonal input. 5.9.1 A digression on the Fourier Amplitude Sensitivity Test (FAST). 5.10 How to compute the sensitivity indices: the case of non--orthogonal input. 5.11 Putting the method to work: the Level E model. 5.11.1 Case of orthogonal input factors. 5.11.2 Case of correlated input factors. 5.12 Putting the method to work: the bungee jumping model. 5.13 Caveats. 6. SENSITIVITY ANALYSIS IN DIAGNOSTIC MODELLING: MONTE CARLO FILTERING AND REGIONALISED SENSITIVITY ANALYSIS, BAYESIAN UNCERTAINTY ESTIMATION AND GLOBAL SENSITIVITY ANALYSIS. 6.1 Model calibration and Factors Mapping Setting. 6.2 Monte Carlo filtering and regionalised sensitivity analysis. 6.2.1 Caveats. 6.3 Putting MC filtering and RSA to work: the problem of hedging a financial portfolio. 6.4 Putting MC filtering and RSA to work: the Level E test case. 6.5 Bayesian uncertainty estimation and global sensitivity analysis. 6.5.1 Bayesian uncertainty estimation. 6.5.2 The GLUE case. 6.5.3 Using global sensitivity analysis in the Bayesian uncertainty estimation. 6.5.4 Implementation of the method. 6.6 Putting Bayesian analysis and global SA to work: two spheres. 6.7 Putting Bayesian analysis and global SA to work: a chemical experiment. 6.7.1 Bayesian uncertainty analysis (GLUE case). 6.7.2 Global sensitivity analysis. 6.7.3 Correlation analysis. 6.7.4 Further analysis by varying temperature in the data set: fewer interactions in the model. 6.8 Caveats. 7. HOW TO USE SIMLAB. 7.1 Introduction. 7.2 How to obtain and install SIMLAB. 7.3 SIMLAB main panel. 7.4 Sample generation. 7.4.1 FAST. 7.4.2 Fixed sampling. 7.4.3 Latin hypercube sampling (LHS). 7.4.4 The method of Morris. 7.4.5 Quasi--Random LpTau. 7.4.6 Random. 7.4.7 Replicated Latin Hypercube (r--LHS). 7.4.8 The method of Sobol'. 7.4.9 How to induce dependencies in the input factors. 7.5 How to execute models. 7.6 Sensitivity analysis. 8. FAMOUS QUOTES: SENSITIVITY ANALYSIS IN THE SCIENTIFIC DISCOURSE. REFERENCES. INDEX.

2,297 citations