scispace - formally typeset
Search or ask a question
Author

William G. Madow

Bio: William G. Madow is an academic researcher. The author has contributed to research in topics: Statistical model & Multivariate analysis. The author has an hindex of 2, co-authored 2 publications receiving 7478 citations.

Papers
More filters

Cited by
More filters
Book
B. J. Winer1
01 Jan 1962
TL;DR: In this article, the authors introduce the principles of estimation and inference: means and variance, means and variations, and means and variance of estimators and inferors, and the analysis of factorial experiments having repeated measures on the same element.
Abstract: CHAPTER 1: Introduction to Design CHAPTER 2: Principles of Estimation and Inference: Means and Variance CHAPTER 3: Design and Analysis of Single-Factor Experiments: Completely Randomized Design CHAPTER 4: Single-Factor Experiments Having Repeated Measures on the Same Element CHAPTER 5: Design and Analysis of Factorial Experiments: Completely-Randomized Design CHAPTER 6: Factorial Experiments: Computational Procedures and Numerical Example CHAPTER 7: Multifactor Experiments Having Repeated Measures on the Same Element CHAPTER 8: Factorial Experiments in which Some of the Interactions are Confounded CHAPTER 9: Latin Squares and Related Designs CHAPTER 10: Analysis of Covariance

25,607 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors, and derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimensions.

16,189 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the problem of estimating the sampling distribution of a pre-specified random variable R(X, F) on the basis of the observed data x.
Abstract: We discuss the following problem given a random sample X = (X 1, X 2,…, X n) from an unknown probability distribution F, estimate the sampling distribution of some prespecified random variable R(X, F), on the basis of the observed data x. (Standard jackknife theory gives an approximate mean and variance in the case R(X, F) = \(\theta \left( {\hat F} \right) - \theta \left( F \right)\), θ some parameter of interest.) A general method, called the “bootstrap”, is introduced, and shown to work satisfactorily on a variety of estimation problems. The jackknife is shown to be a linear approximation method for the bootstrap. The exposition proceeds by a series of examples: variance of the sample median, error rates in a linear discriminant analysis, ratio estimation, estimating regression parameters, etc.

14,483 citations

Journal ArticleDOI
TL;DR: It is suggested that if Guttman's latent-root-one lower bound estimate for the rank of a correlation matrix is accepted as a psychometric upper bound, then the rank for a sample matrix should be estimated by subtracting out the component in the latent roots which can be attributed to sampling error.
Abstract: It is suggested that if Guttman's latent-root-one lower bound estimate for the rank of a correlation matrix is accepted as a psychometric upper bound, following the proofs and arguments of Kaiser and Dickman, then the rank for a sample matrix should be estimated by subtracting out the component in the latent roots which can be attributed to sampling error, and least-squares “capitalization” on this error, in the calculation of the correlations and the roots. A procedure based on the generation of random variables is given for estimating the component which needs to be subtracted.

6,722 citations