scispace - formally typeset
Search or ask a question
Author

William H. Bunnelle

Bio: William H. Bunnelle is an academic researcher from AbbVie. The author has contributed to research in topics: Nicotinic agonist & Nicotinic acetylcholine receptor. The author has an hindex of 24, co-authored 65 publications receiving 1727 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that α7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.
Abstract: The α7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel α7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat ( K i = 10.8 nm) and human ( K i = 16.7 nm) α7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the α7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that α7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of α7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked α7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that α7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer9s disease and schizophrenia.

201 citations

Journal ArticleDOI
TL;DR: The findings show that targeting α7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment of AD, and expand the understanding of the potential therapeutic viability associated with the α7NAChR approach.
Abstract: We previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an alpha7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting alpha7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential therapeutic viability associated with the alpha7 nAChR approach in the treatment of AD.

108 citations

Journal ArticleDOI
TL;DR: An overview of the structure-affinity relationships that continue to drive development of new nAChR ligands is provided.
Abstract: In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the α4β2 and / or α7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

98 citations

Journal ArticleDOI
TL;DR: Preclinical validation that α7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders is provided.
Abstract: Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the α7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine α7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at α7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that α7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.

89 citations

Journal ArticleDOI
TL;DR: Amination of 5-bromo-2-chloropyridine catalyzed by a palladium-Xantphos complex predominately gives 5-amino-2/4a in 96% isolated yield and excellent chemoselectivity.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The neonicotinoids have outstanding potency and systemic action for crop protection against piercing-sucking pests, and they are highly effective for flea control on cats and dogs.
Abstract: ▪ Abstract The neonicotinoids, the newest major class of insecticides, have outstanding potency and systemic action for crop protection against piercing-sucking pests, and they are highly effective for flea control on cats and dogs. Their common names are acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam. They generally have low toxicity to mammals (acute and chronic), birds, and fish. Biotransformations involve some activation reactions but largely detoxification mechanisms. In contrast to nicotine, epibatidine, and other ammonium or iminium nicotinoids, which are mostly protonated at physiological pH, the neonicotinoids are not protonated and have an electronegative nitro or cyano pharmacophore. Agonist recognition by the nicotinic receptor involves cation-π interaction for nicotinoids in mammals and possibly a cationic subsite for interaction with the nitro or cyano substituent of neonicotinoids in insects. The low affinity of neonicotinoids for vertebrate ...

1,409 citations

Journal ArticleDOI
TL;DR: Varenicline displays high α4β2 nAChR affinity and the desired in vivo dopaminergic profile and provides relief from the craving and withdrawal syndrome that accompanies cessation attempts.
Abstract: Herein we describe a novel series of compounds from which varenicline (1, 6,7,8,9-tetrahydro-6,10-methano-6H-pyrazino[2,3-h][3]benzazepine) has been identified for smoking cessation. Neuronal nicotinic acetylcholine receptors (nAChRs) mediate the dependence-producing effects of nicotine. We have pursued α4β2 nicotinic receptor partial agonists to inhibit dopaminergic activation produced by smoking while simultaneously providing relief from the craving and withdrawal syndrome that accompanies cessation attempts. Varenicline displays high α4β2 nAChR affinity and the desired in vivo dopaminergic profile.

872 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the assembly, activity and conformational transitions of nicotinic receptors are described, as well as developments in the therapeutic application of Nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.
Abstract: Nicotinic receptors - a family of ligand-gated ion channels that mediate the effects of the neurotransmitter acetylcholine - are among the most well understood allosteric membrane proteins from a structural and functional perspective. There is also considerable interest in modulating nicotinic receptors to treat nervous-system disorders such as Alzheimer's disease, schizophrenia, depression, attention deficit hyperactivity disorder and tobacco addiction. This article describes both recent advances in our understanding of the assembly, activity and conformational transitions of nicotinic receptors, as well as developments in the therapeutic application of nicotinic receptor ligands, with the aim of aiding novel drug discovery by bridging the gap between these two rapidly developing fields.

652 citations

Journal ArticleDOI
TL;DR: Evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance.

625 citations

Journal ArticleDOI
TL;DR: Coupling reaction of electron-deficient aryl bromides with imidazole or pyrazole occurs at 60-90 degrees C to provide the corresponding N-aryl products in good to excellent yields and the possible action of amino acids in these coupling reactions is discussed.
Abstract: CuI-catalyzed coupling reaction of electron-deficient aryl iodides with aliphatic primary amines occurs at 40 degrees C under the promotion of N-methylglycine. Using L-proline as the promoter, coupling reaction of aryl iodides or aryl bromides with aliphatic primary amines, aliphatic cyclic secondary amines, or electron-rich primary arylamines proceeds at 60-90 degrees C; an intramolecular coupling reaction between aryl chloride and primary amine moieties gives indoline at 70 degrees C; coupling reaction of aryl iodides with indole, pyrrole, carbazole, imidazole, or pyrazole can be carried out at 75-90 degrees C; and coupling reaction of electron-deficient aryl bromides with imidazole or pyrazole occurs at 60-90 degrees C to provide the corresponding N-aryl products in good to excellent yields. In addition, N,N-dimethylglycine promotes the coupling reaction of electron-rich aryl bromides with imidazole or pyrazole to afford the corresponding N-aryl imidazoles or pyrazoles at 110 degrees C. The possible action of amino acids in these coupling reactions is discussed.

599 citations