scispace - formally typeset
Search or ask a question
Author

William H. Goldstein

Bio: William H. Goldstein is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Ionization & Plasma. The author has an hindex of 25, co-authored 105 publications receiving 3087 citations. Previous affiliations of William H. Goldstein include European Atomic Energy Community.
Topics: Ionization, Plasma, Laser, Plasma diagnostics, Ion


Papers
More filters
Journal ArticleDOI
TL;DR: A method is presented for calculating the bound-bound emission from a local thermodynamic equilibrium plasma and it is shown that under certain plasma conditions the contributions of low-probability transitions can accumulate into an important component of the emission.
Abstract: A method is presented for calculating the bound-bound emission from a local thermodynamic equilibrium plasma. The total transition array of a specific single-electron transition, including all possible contributing configurations, is described by only a small number of super-transition-arrays (STA's). Exact analytic expressions are given for the first few moments of an STA. The method is shown to interpolate smoothly between the average-atom (AA) results and the detailed configuration accounting that underlies the unresolved transition array (UTA) method. Each STA is calculated in its own, optimized potential, and the model achieves rapid convergence in the number of STA's included. Comparisons of predicted STA spectra with the results of the AA and UTA methods are presented. It is shown that under certain plasma conditions the contributions of low-probability transitions can accumulate into an important component of the emission. In these cases, detailed configuration accounting is impractical. On the other hand, the detailed structure of the spectrum under such conditions is not described by the AA method. The application of the STA method to laser-produced plasma experiments is discussed.

319 citations

Journal ArticleDOI
TL;DR: The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation.
Abstract: The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation. The plasma density and temperature are simultaneously constrained with high accuracy, allowing unambiguous comparisons with opacity models used in modeling radiative transfer in equilibrium astrophysical and laboratory plasmas. The experimental Rosseland and Planck group means are constrained to an accuracy of 15%.

134 citations

Journal ArticleDOI
TL;DR: Results of a niobium absorption experiment are presented that represent a major step in the development of techniques necessary for the quantitative characterization of hot, dense matter.
Abstract: Results of a niobium absorption experiment are presented that represent a major step in the development of techniques necessary for the quantitative characterization of hot, dense matter. The general requirements for performing quantitative analyses of absorption spectra are discussed. Hydrodynamic simulations are used to illustrate the behavior of tamped x-ray-heated matter and to indicate potential two-dimensional problems inherent in the technique. The absorption spectrum of a low-Z material, in this case aluminum, mixed with niobium provides a temperature diagnostic, which together with radiography as a density diagnostic fully characterizes the sample. A discussion is presented of opacity calculations and a comparison to the measurements is given that illustrates the need for experiments to provide a critical test of theory. The experimental technique is placed in context with a review of previous measurements using absorption spectroscopy to probe hot, dense matter. It is shown that the overall experimental concepts, although understood, were not always achieved in previous experiments. \textcopyright{} 1996 The American Physical Society.

106 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Astrophysical Plasma Emission Code (APEC) as mentioned in this paper uses atomic data from the companion ASTPED database to calculate spectral models for hot plasmas, such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths.
Abstract: New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n = 6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n = 2) transitions.

2,124 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

01 Apr 2003
TL;DR: In this paper, the authors measured the flux of neutrino from distant nuclear reactors and found fewer nu;(e) events than expected from standard assumptions about nu; (e) propagation at the 99.95% C.L.yr exposure.
Abstract: KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.

1,659 citations

Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations