scispace - formally typeset
Search or ask a question
Author

William Heidbrink

Bio: William Heidbrink is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Tokamak & DIII-D. The author has an hindex of 48, co-authored 287 publications receiving 7545 citations. Previous affiliations of William Heidbrink include National Institutes of Natural Sciences, Japan & Princeton Plasma Physics Laboratory.
Topics: Tokamak, DIII-D, Neutral beam injection, Ion, Plasma


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, neutral beams were injected into low field deuterium plasmas in an attempt to destabilize toroidicity induced Alfven eigenmodes (TAE modes).
Abstract: Neutral beams were injected into low field (B = 0.7-1.0 T) deuterium plasmas in an attempt to destabilize toroidicity induced Alfven eigenmodes (TAE modes). When the parallel beam velocity approached the Alfven velocity and the volume averaged beam beta exceeded 2%, localized, propagating modes with n = 2-10 were observed. As much as 45% of the beam power was lost as a result of the modes. The threshold for TAE instability is at least one order of magnitude higher than that predicted by Fu and VanDam (Phys. Fluids B 1 (1989) 1949).

272 citations

Journal ArticleDOI
TL;DR: The measured frequency of the new mode agrees with the theoretical frequency of beta-induced Alfven eigenmodes and another dangerous instability with similar properties but approximately half the TAE frequency appears in a spectral gap that is created by finite beta effects.
Abstract: Energetic ions can drive Alfv\'en gap modes unstable, causing large losses of fast ions. Toroidicity-induced Alfv\'en eigenmodes (TAE) were expected to disappear into the shear Alfv\'en continuum and become stable as the plasma beta increased. Although TAE modes may disappear, another dangerous instability with similar properties but approximately half the TAE frequency appears in a spectral gap that is created by finite beta effects. The measured frequency of the new mode agrees with the theoretical frequency of beta-induced Alfv\'en eigenmodes.

237 citations

Journal ArticleDOI
TL;DR: The theoretical predictions and experimental observations of toroidicity-induced Alfven eigenmodes (TAE) are now in good agreement, with particularly detailed agreement in the mode frequencies as mentioned in this paper.
Abstract: It is shown that the theoretical predictions and experimental observations of toroidicity‐induced Alfven eigenmodes (TAE’s) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite‐β, shaped discharges predict the existence of other global Alfven modes, in particular the ellipticity‐induced Alfven eigenmode (EAE) and a new mode, the beta‐induced Alfven eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high β. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.

211 citations

Journal ArticleDOI
TL;DR: Toroidicity induced Alfven eigenmodes (TAE) were observed in the DIII-D tokamak when energetic beam ions (approximately 75 keV) are used to destabilize the mode as mentioned in this paper.
Abstract: Toroidicity induced Alfven eigenmodes (TAE) are observed in the DIII-D tokamak when energetic beam ions ( approximately 75 keV) are used to destabilize the mode. Measurements of the neutron emission indicate that up to 70% of the injected power is lost during strong TAE activity. Measurements of the poloidal distribution of fast ion losses suggest that the losses are greatest near the vessel midplane. Fast ion losses in discharges with combined fishbones and TAE bursts are 1.5 to 2 times greater than losses in fishbone discharges without TAB activity. The scaling of fast ion losses with MHD mode amplitude exhibits no threshold in the mode amplitude, suggesting that mode particle pumping is the dominant loss mechanism

201 citations

Journal ArticleDOI
TL;DR: Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory.
Abstract: Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (qmin � 2). Strong bursting and frequency chirping are observed, concomitant with large (10%–15%) drops in the neutron emission. Large electron density fluctuations (~ ne=ne ’ 1:5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode.

140 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
TL;DR: The ExB shear stabilization model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition as mentioned in this paper.
Abstract: One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.

1,251 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors.
Abstract: The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R&D avenues for their resolution are presented.

1,187 citations

Journal ArticleDOI
TL;DR: A review of recent advances in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed in this paper.
Abstract: Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.

1,051 citations

Journal ArticleDOI
TL;DR: The ITER Physics Basis as mentioned in this paper presents and evaluates the physics rules and methodologies for plasma performance projections, which provide the basis for the design of a tokamak burning plasma device whose goal is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes.
Abstract: The ITER Physics Basis presents and evaluates the physics rules and methodologies for plasma performance projections, which provide the basis for the design of a tokamak burning plasma device whose goal is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. This Chapter summarizes the physics basis for burning plasma projections, which is developed in detail by the ITER Physics Expert Groups in subsequent chapters. To set context, the design guidelines and requirements established in the report of ITER Special Working Group 1 are presented, as are the specifics of the tokamak design developed in the Final Design Report of the ITER Engineering Design Activities, which exemplifies burning tokamak plasma experiments. The behaviour of a tokamak plasma is determined by the interaction of many diverse physics processes, all of which bear on projections for both a burning plasma experiment and an eventual tokamak reactor. Key processes summarized here are energy and particle confinement and the H-mode power threshold; MHD stability, including pressure and density limits, neoclassical islands, error fields, disruptions, sawteeth, and ELMs; power and particle exhaust, involving divertor power dispersal, helium exhaust, fuelling and density control, H-mode edge transition region, erosion of plasma facing components, tritium retention; energetic particle physics; auxiliary power physics; and the physics of plasma diagnostics. Summaries of projection methodologies, together with estimates of their attendant uncertainties, are presented in each of these areas. Since each physics element has its own scaling properties, an integrated experimental demonstration of the balance between the combined processes which obtains in a reactor plasma is inaccessible to contemporary experimental facilities: it requires a reactor scale device. It is argued, moreover, that a burning plasma experiment can be sufficiently flexible to permit operation in a steady state mode, with non-inductive plasma current drive, as well as in a pulsed mode where current is inductively driven. Overall, the ITER Physics Basis can support a range of candidate designs for a tokamak burning plasma facility. For each design, there will remain a significant uncertainty in the projected performance, but the projection methodologies outlined here do suffice to specify the major parameters of such a facility and form the basis for assuring that its phased operation will return sufficient information to design a prototype commercial fusion power reactor, thus fulfilling the goal of the ITER project.

1,025 citations