scispace - formally typeset
Search or ask a question
Author

William Humphrey

Bio: William Humphrey is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Bacteriorhodopsin & Retinal. The author has an hindex of 11, co-authored 11 publications receiving 37862 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
01 Dec 1996
TL;DR: NAMD is a molecular dynamics program designed for high performance simulations of large biomolecular systems on parallel computers that uses spatial decom position coupled with a multithreaded, message-driven design, which is shown to scale efficiently to multiple processors.
Abstract: NAMD is a molecular dynamics program designed for high performance simulations of large biomolecular systems on parallel computers. An object-oriented design imple mented using C++ facilitates the incorporation of new algorithms into the program. NAMD uses spatial decom position coupled with a multithreaded, message-driven design, which is shown to scale efficiently to multiple processors. Also, NAMD incorporates the distributed par allel multipole tree algorithm for full electrostatic force evaluation in ON time. NAMD can be connected via a communication system to a molecular graphics program in order to provide an interactive modeling tool for viewing and modifying a running simulation. The application of NAMD to a protein-water system of 32,867 atoms illus trates the performance of NAMD.

521 citations

Journal ArticleDOI
TL;DR: The structure of bacteriorhodopsin based on electron microscopy studies, as provided in Henderson et al. (1990), is refined using molecular dynamics simulations and an all-atom description is applied, albeit with helix D shifted.
Abstract: The structure of bacteriorhodopsin based on electron microscopy (EM) studies, as provided in Henderson et al. (1990), is refined using molecular dynamics simulations. The work is based on a previously refined and simulated structure which had added the interhelical loops to the EM model of bR. The present study applies an all-atom description to this structure and constraints to the original Henderson model, albeit with helix D shifted. Sixteen waters are then added to the protein, six in the retinal Schiff base region, four in the retinal-Asp-96 interstitial space, and six near the extracellular side. The root mean square deviation between the resulting structure and the Henderson et al. (1990) model measures only 1.8 A. Further simulations of retinal analogues for substitutions at the 2- and 4-positions of retinal and an analogue without a beta-ionone ring agree well with observed spectra. The resulting structure is characterized in view of bacteriorhodopsin's function; key features are (1) a retinal Schiff base-counterion complex which is formed by a hydrogen bridge network involving six water molecules, Asp-85, Asp-212, Tyr-185, Tyr-57, Arg-82, and Thr-89, and which exhibits Schiff base nitrogen-Asp-85 and -Asp-212 distances of 6 and 4.6 A; (2) retinal assumes a corkscrew twist as one views retinal along its backbone; and (3) a deviation from the usual alpha-helical structure of the cytoplasmic side of helix G.

88 citations

Journal ArticleDOI
TL;DR: The primary all-trans --> 13-cis photoisomerization of retinal in bacteriorhodopsin has been investigated by means of quantum chemical and combined classical/quantum mechanical simulations employing the density matrix evolution method and is in qualitative agreement with the observed increase in fluorescent lifetimes.

65 citations

Journal ArticleDOI
TL;DR: Earlier theoretical investigations of the photocycle of bacteriorhodopsin including relevant quantum chemistry studies of retinal, structure refinement, molecular dynamics simulations, and evaluation of pKa values are summarized.
Abstract: The availability of the structure of bacteriorhodopsin from electron microscopy studies has opened up the possibility of exploring the proton pump mechanism of this protein by means of molecular dynamics simulations. In this review we summarize earlier theoretical investigations of the photocycle of bacteriorhodopsin including relevant quantum chemistry studies of retinal, structure refinement, molecular dynamics simulations, and evaluation of pKa values. We then review a series of recent modeling efforts which refined the structure of bacteriorhodopsin adding internal water, and which studied the nature of the J intermediate and the likely geometry of the K590 and L550 intermediates (strongly distorted 13-cis) as well as the sequence of retinal geometry and protein conformational transitions which are conventionally summarized as the M412 intermediate. We also review simulations of the photocycle of light-adapted bacteriorhodopsin at T=77 K and of the photocycle of dark-adapted bacteriorhodopsin, both cycles differing from the conventional photocycle through a nonfunctional (pure 13-cis) retinal geometry of the corresponding K590 and L550 states. The simulations demonstrate a potentially critical role of water and of minute reorientations of retinal's Schiff base nitrogen in controlling proton pumping in bR568; the simulations also indicate the existence of heterogeneous photocycles. The results exemplify the important role of molecular dynamics simulations in extending investigations on bacteriorhodopsin to a level of detail which is presently beyond experimental resolution, but which needs to be known to resolve the pump mechanism of bacteriorhodopsin. Finally, we outline the major existing challenges in the field of bacteriorhodopsin modeling.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations

Journal ArticleDOI
TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Abstract: Molecular simulation is an extremely useful, but computationally very expensive tool for studies of chemical and biomolecular systems Here, we present a new implementation of our molecular simulation toolkit GROMACS which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines The code encompasses a minimal-communication domain decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver, and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to enable integration time steps up to 5 fs for atomistic simulations also in parallel To improve the scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in addition used a Multiple-Program, Multiple-Data approach, with separate node domains responsible for direct and reciprocal space interactions Not only does this combination of a

14,032 citations