scispace - formally typeset
Search or ask a question
Author

William I. Bertiger

Other affiliations: Jet Propulsion Laboratory
Bio: William I. Bertiger is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Orbit determination & Satellite navigation. The author has an hindex of 9, co-authored 17 publications receiving 702 citations. Previous affiliations of William I. Bertiger include Jet Propulsion Laboratory.

Papers
More filters
Patent
29 Mar 1996
TL;DR: In this paper, a Kalman-type filter/smoother is used to adjust a real-time orbital model to produce and output orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from the GPS system broadcasts.
Abstract: The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite, the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. The orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from the GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and clock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data, thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

199 citations

Journal ArticleDOI
TL;DR: An extended Kalman Filter modeling the relative spacecraft dynamics has been developed and the combination of reduced dynamic filtering with the LAMBDA method results in smooth relative position estimates as well as fast and reliable ambiguity resolution.
Abstract: Precision relative navigation is an essential aspect of spacecraft formation flying missions, both from an operational and a scientific point of view. When using GPS as a relative distance sensor, dual-frequency receivers are required for high accuracy at large inter-satellite separations. This allows for a correction of the relative ionospheric path delay and enables double difference integer ambiguity resolution. Although kinematic relative positioning techniques demonstrate promising results for hardware-in-the-loop simulations, they were found to lack an adequate robustness in real-world applications. To overcome this limitation, an extended Kalman Filter modeling the relative spacecraft dynamics has been developed. The filter processes single difference GPS pseudorange and carrier phase observations to estimate the relative position and velocity along with empirical accelerations and carrier phase ambiguities. In parallel, double difference carrier phase ambiguities are resolved on both frequencies using the least square ambiguity decorrelation adjustment (LAMBDA) method in order to fully exploit the inherent measurement accuracy. The combination of reduced dynamic filtering with the LAMBDA method results in smooth relative position estimates as well as fast and reliable ambiguity resolution. The proposed method has been validated with data from the gravity recovery and climate experiment (GRACE) mission. For an 11-day data arc, the resulting solution matches the GRACE K-Band Ranging System measurements with an accuracy of 1 mm, whereby 83% of the double difference ambiguities are resolved.

166 citations

Journal ArticleDOI
TL;DR: In this article, the long-term stability of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal.

84 citations

Patent
21 Aug 2009
TL;DR: In this paper, a method for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) is described, without need for periodic externally-communicated information.
Abstract: Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquision of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parametrized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquision.

63 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work determines precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers, and analysis of data from hundreds to thousands of sites every day with 40-Mflop computers yields results comparable in quality to the simultaneous analysis of all data.
Abstract: Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.

3,013 citations

Journal ArticleDOI
TL;DR: A detailed overview of the TanDEM-X mission concept is given which is based on the systematic combination of several innovative technologies, including a novel satellite formation flying concept allowing for the collection of bistatic data with short along-track baselines, as well as the use of new interferometric modes for system verification and DEM calibration.
Abstract: TanDEM-X (TerraSAR-X add-on for digital elevation measurements) is an innovative spaceborne radar interferometer that is based on two TerraSAR-X radar satellites flying in close formation. The primary objective of the TanDEM-X mission is the generation of a consistent global digital elevation model (DEM) with an unprecedented accuracy, which is equaling or surpassing the HRTI-3 specification. Beyond that, TanDEM-X provides a highly reconfigurable platform for the demonstration of new radar imaging techniques and applications. This paper gives a detailed overview of the TanDEM-X mission concept which is based on the systematic combination of several innovative technologies. The key elements are the bistatic data acquisition employing an innovative phase synchronization link, a novel satellite formation flying concept allowing for the collection of bistatic data with short along-track baselines, as well as the use of new interferometric modes for system verification and DEM calibration. The interferometric performance is analyzed in detail, taking into account the peculiarities of the bistatic operation. Based on this analysis, an optimized DEM data acquisition plan is derived which employs the combination of multiple data takes with different baselines. Finally, a collection of instructive examples illustrates the capabilities of TanDEM-X for the development and demonstration of new remote sensing applications.

1,235 citations

Patent
01 Feb 1999
TL;DR: An adaptive interface for a programmable system, for predicting a desired user function, based on user history, as well as machine internal status and context, is presented for confirmation by the user, and the predictive mechanism is updated based on this feedback as mentioned in this paper.
Abstract: An adaptive interface for a programmable system, for predicting a desired user function, based on user history, as well as machine internal status and context. The apparatus receives an input from the user and other data. A predicted input is presented for confirmation by the user, and the predictive mechanism is updated based on this feedback. Also provided is a pattern recognition system for a multimedia device, wherein a user input is matched to a video stream on a conceptual basis, allowing inexact programming of a multimedia device. The system analyzes a data stream for correspondence with a data pattern for processing and storage. The data stream is subjected to adaptive pattern recognition to extract features of interest to provide a highly compressed representation that may be efficiently processed to determine correspondence. Applications of the interface and system include a video cassette recorder (VCR), medical device, vehicle control system, audio device, environmental control system, securities trading terminal, and smart house. The system optionally includes an actuator for effecting the environment of operation, allowing closed-loop feedback operation and automated learning.

1,182 citations

Patent
11 Mar 2010
TL;DR: In this paper, the authors proposed a system for preventing vehicle accidents in which GPS ranging signals relating to a host vehicle's position on a roadway on a surface of the earth are received on a first communication link from a network of satellites and DGPS auxiliary range correction signals for correcting propagation delay errors in the GPS ranging signal from a station or satellite.
Abstract: System and method for preventing vehicle accidents in which GPS ranging signals relating to a host vehicle's position on a roadway on a surface of the earth are received on a first communication link from a network of satellites and DGPS auxiliary range correction signals for correcting propagation delay errors in the GPS ranging signals are received on a second communication link from a station or satellite. The host vehicle's position on a roadway on a surface of the earth is determined from the GPS, DGPS, and accurate map database signals with centimeter accuracy and communicated to other vehicles. The host vehicle receives position information from other vehicles and determines whether any other vehicle from which position information is received represents a collision threat to the host vehicle based on the position of the other vehicle relative to the roadway and the host vehicle. If so, a warning or vehicle control signal response to control the host vehicle's motion is generated to prevent a collision with the other vehicle.

1,020 citations