scispace - formally typeset
Search or ask a question
Author

William J. Gutowski

Bio: William J. Gutowski is an academic researcher from Iowa State University. The author has contributed to research in topics: Climate model & Precipitation. The author has an hindex of 44, co-authored 142 publications receiving 11349 citations. Previous affiliations of William J. Gutowski include University of Cape Town & International Centre for Theoretical Physics.


Papers
More filters
Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations

01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986–2005, unless otherwise stated.

1,719 citations

Journal ArticleDOI
TL;DR: The North American Regional Climate Change Assessment Program (NARCCAP) as mentioned in this paper explores separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs).
Abstract: There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of thismore » international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.« less

586 citations

Book
01 Jan 2001
TL;DR: Contributing Authors R.C. Arritt, B.H. Bates, R.L. McGregor, N. Miller, J. Murphy, M. Rummukainen, F. Semazzi, K. Walsh, P. Widmann and M. Wild.
Abstract: Contributing Authors R. Arritt, B. Bates, R. Benestad, G. Boer, A. Buishand, M. Castro, D. Chen, W. Cramer, R. Crane, J. F. Crossley, M. Dehn, K. Dethloff, J. Dippner, S. Emori, R. Francisco, J. Fyfe, F.W. Gerstengarbe, W. Gutowski, D. Gyalistras, I. Hanssen-Bauer, M. Hantel, D.C. Hassell, D. Heimann, C. Jack, J. Jacobeit, H. Kato, R. Katz, F. Kauker, T. Knutson, M. Lal, C. Landsea, R. Laprise, L.R. Leung, A.H. Lynch, W. May, J.L. McGregor, N.L. Miller, J. Murphy, J. Ribalaygua, A. Rinke, M. Rummukainen, F. Semazzi, K. Walsh, P. Werner, M. Widmann, R. Wilby, M. Wild, Y. Xue

575 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the challenges and future perspectives of regional climate model (RCM) or dynamical downscaling, activities, and highlight the development of cou...
Abstract: We review the challenges and future perspectives of regional climate model (RCM), or dynamical downscaling, activities. Among the main technical issues in need of better understanding are those of selection and sensitivity to the model domain and resolution, techniques for providing lateral boundary conditions, and RCM internal variability. The added value (AV) obtained with the use of RCMs remains a central issue, which needs more rigorous and comprehensive analysis strategies. Within the context of regional climate projections, large ensembles of simulations are needed to better understand the models and characterize uncertainties. This has provided an impetus for the development of the Coordinated Regional Downscaling Experiment (CORDEX), the first international program offering a common protocol for downscaling experiments, and we discuss how CORDEX can address the key scientific challenges in downscaling research. Among the main future developments in RCM research, we highlight the development of cou...

469 citations


Cited by
More filters
01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
TL;DR: The Coupled Model Intercomparison Project (CMIP3) dataset as discussed by the authors is the largest and most comprehensive international coupled climate model experiment and multimodel analysis effort ever attempted.
Abstract: A coordinated set of global coupled climate model [atmosphere–ocean general circulation model (AOGCM)] experiments for twentieth- and twenty-first-century climate, as well as several climate change commitment and other experiments, was run by 16 modeling groups from 11 countries with 23 models for assessment in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Since the assessment was completed, output from another model has been added to the dataset, so the participation is now 17 groups from 12 countries with 24 models. This effort, as well as the subsequent analysis phase, was organized by the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group on Coupled Models (WGCM) Climate Simulation Panel, and constitutes the third phase of the Coupled Model Intercomparison Project (CMIP3). The dataset is called the WCRP CMIP3 multimodel dataset, and represents the largest and most comprehensive international global coupled climate model experiment and multimodel analysis effort ever attempted. As of March 2007, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) has collected, archived, and served roughly 32 TB of model data. With oversight from the panel, the multimodel data were made openly available from PCMDI for analysis and academic applications. Over 171 TB of data had been downloaded among the more than 1000 registered users to date. Over 200 journal articles, based in part on the dataset, have been published so far. Though initially aimed at the IPCC AR4, this unique and valuable resource will continue to be maintained for at least the next several years. Never before has such an extensive set of climate model simulations been made available to the international climate science community for study. The ready access to the multimodel dataset opens up these types of model analyses to researchers, including students, who previously could not obtain state-of-the-art climate model output, and thus represents a new era in climate change research. As a direct consequence, these ongoing studies are increasing the body of knowledge regarding our understanding of how the climate system currently works, and how it may change in the future.

2,759 citations

Book Chapter
01 Jan 2013
TL;DR: The authors assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system.
Abstract: This chapter assesses long-term projections of climate change for the end of the 21st century and beyond, where the forced signal depends on the scenario and is typically larger than the internal variability of the climate system. Changes are expressed with respect to a baseline period of 1986-2005, unless otherwise stated.

2,253 citations

Book
01 Nov 2002
TL;DR: A comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability.
Abstract: This comprehensive text and reference work on numerical weather prediction, first published in 2002, covers not only methods for numerical modeling, but also the important related areas of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of the subject, equations of motion and their approximations, a modern and clear description of numerical methods, and the determination of initial conditions using weather observations (an important science known as data assimilation). Finally, this book provides a clear discussion of the problems of predictability and chaos in dynamical systems and how they can be applied to atmospheric and oceanic systems. Professors and students in meteorology, atmospheric science, oceanography, hydrology and environmental science will find much to interest them in this book, which can also form the basis of one or more graduate-level courses.

2,240 citations

Journal ArticleDOI
TL;DR: There is a need for a move away from comparison studies into the provision of decision-making tools for planning and management that are robust to future uncertainties; with examination and understanding of uncertainties within the modelling system.
Abstract: There is now a large published literature on the strengths and weaknesses of downscaling methods for different climatic variables, in different regions and seasons. However, little attention is given to the choice of downscaling method when examining the impacts of climate change on hydrological systems. This review paper assesses the current downscaling literature, examining new developments in the downscaling field specifically for hydrological impacts. Sections focus on the downscaling concept; new methods; comparative methodological studies; the modelling of extremes; and the application to hydrological impacts. Consideration is then given to new developments in climate scenario construction which may offer the most potential for advancement within the ‘downscaling for hydrological impacts’ community, such as probabilistic modelling, pattern scaling and downscaling of multiple variables and suggests ways that they can be merged with downscaling techniques in a probabilistic climate change scenario framework to assess the uncertainties associated with future projections. Within hydrological impact studies there is still little consideration given to applied research; how the results can be best used to enable stakeholders and managers to make informed, robust decisions on adaptation and mitigation strategies in the face of many uncertainties about the future. It is suggested that there is a need for a move away from comparison studies into the provision of decision-making tools for planning and management that are robust to future uncertainties; with examination and understanding of uncertainties within the modelling system. Copyright © 2007 Royal Meteorological Society

2,015 citations