scispace - formally typeset
Search or ask a question
Author

William J. Pitts

Bio: William J. Pitts is an academic researcher from Bristol-Myers Squibb. The author has contributed to research in topics: IMP dehydrogenase & Phosphodiesterase. The author has an hindex of 24, co-authored 80 publications receiving 1915 citations.


Papers
More filters
Journal ArticleDOI
22 May 2015-Science
TL;DR: An amine synthesis that repurposes two simple feedstock building blocks: olefins and nitro(hetero)arenes and smoothly yields secondary amines in a formal olefin hydroamination that tolerates aryl halides and carbonyl compounds.
Abstract: The synthesis and functionalization of amines are fundamentally important in a vast range of chemical contexts. We present an amine synthesis that repurposes two simple feedstock building blocks: olefins and nitro(hetero)arenes. Using readily available reactants in an operationally simple procedure, the protocol smoothly yields secondary amines in a formal olefin hydroamination. Because of the presumed radical nature of the process, hindered amines can easily be accessed in a highly chemoselective transformation. A screen of more than 100 substrate combinations showcases tolerance of numerous unprotected functional groups such as alcohols, amines, and even boronic acids. This process is orthogonal to other aryl amine syntheses, such as the Buchwald-Hartwig, Ullmann, and classical amine-carbonyl reductive aminations, as it tolerates aryl halides and carbonyl compounds.

327 citations

Journal ArticleDOI
TL;DR: The late stage optimization efforts including a structure-guided design and water displacement strategy that led to the discovery of BMS-986165 as a high affinity JH2 ligand and potent allosteric inhibitor of TYK2 are reported.
Abstract: Small molecule JAK inhibitors have emerged as a major therapeutic advancement in treating autoimmune diseases. The discovery of isoform selective JAK inhibitors that traditionally target the catalytically active site of this kinase family has been a formidable challenge. Our strategy to achieve high selectivity for TYK2 relies on targeting the TYK2 pseudokinase (JH2) domain. Herein we report the late stage optimization efforts including a structure-guided design and water displacement strategy that led to the discovery of BMS-986165 (11) as a high affinity JH2 ligand and potent allosteric inhibitor of TYK2. In addition to unprecedented JAK isoform and kinome selectivity, 11 shows excellent pharmacokinetic properties with minimal profiling liabilities and is efficacious in several murine models of autoimmune disease. On the basis of these findings, 11 appears differentiated from all other reported JAK inhibitors and has been advanced as the first pseudokinase-directed therapeutic in clinical development as an oral treatment for autoimmune diseases.

157 citations

Patent
17 Jun 2002
TL;DR: Pyrimidine phosphodiesterase 7 (PDE 7) inhibitors of the following formula [insert chemical structure here] wherein R1, R2, Z, J and L are described in this paper and analogs thereof are provided which are useful in treating T-cell mediated diseases.
Abstract: Pyrimidine phosphodiesterase 7 (PDE 7) inhibitors of the following formula [insert chemical structure here] wherein R1, R2, Z, J and L are described herein, and analogs thereof are provided which are useful in treating T-cell mediated diseases.

105 citations

Patent
22 Oct 1999
TL;DR: In this paper, the identification of novel inhibitors of IMPDH (inosine-5'-monophosphate dehydrogenase) was presented. But the authors did not identify the drugs that were useful in treating or preventing the disease, such as transplant rejection and autoimmune diseases.
Abstract: The present invention discloses the identification of the novel inhibitors of IMPDH (inosine-5'-monophosphate dehydrogenase). The compounds and pharmaceutical compositions disclosed herein are useful in treating or preventing IMPDH mediated diseases, such as transplant rejection and autoimmune diseases.

100 citations

Journal ArticleDOI
TL;DR: The results from the studies strongly support the notion that PDE7A is not essential for T cell activation.
Abstract: Phosphodiesterases (PDEs) are enzymes which hydrolyze the cyclic nucleotide second messengers, cAMP and cGMP. In leukocytes, PDEs are responsible for depletion of cAMP which broadly suppresses cell functions and cellular responses to many activation stimuli. PDE7A has been proposed to be essential for T lymphocyte activation based on its induction during cell activation and the suppression of proliferation and IL-2 production observed following inhibition of PDE7A expression using a PDE7A antisense oligonucleotide. These observations have led to the suggestion that selective PDE7 inhibitors could be useful in the treatment of T cell-mediated autoimmune diseases. In the present report, we have used targeted gene disruption to examine the role PDE7A plays in T cell activation. In our studies, PDE7A knockout mice (PDE7A−/−) showed no deficiencies in T cell proliferation or Th1- and Th2-cytokine production driven by CD3 and CD28 costimulation. Unexpectedly, the Ab response to the T cell-dependent Ag, keyhole limpet hemocyanin, in the PDE7A−/− mice was found to be significantly elevated. The results from our studies strongly support the notion that PDE7A is not essential for T cell activation.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The application ofadium-catalyzed amination reactions of aryl halides in C-N cross-coupling reactions in the synthesis of heterocycles and pharmaceuticals, in materials science, and in natural product synthesis is discussed.
Abstract: Palladium-catalyzed amination reactions of aryl halides have undergone rapid development in the last 12 years, largely driven by the implementation of new classes of ligands. Biaryl phosphanes have proven to provide especially active catalysts in this context. This Review discusses the application of these catalysts in C-N cross-coupling reactions in the synthesis of heterocycles and pharmaceuticals, in materials science, and in natural product synthesis.

1,722 citations

Journal ArticleDOI
TL;DR: Basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed and how these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered.
Abstract: Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that regulate the cellular levels of the second messengers, cAMP and cGMP, by controlling their rates of degradation. There are 11 different PDE families, with each family typically having several different isoforms and splice variants. These unique PDEs differ in their three-dimensional structure, kinetic properties, modes of regulation, intracellular localization, cellular expression, and inhibitor sensitivities. Current data suggest that individual isozymes modulate distinct regulatory pathways in the cell. These properties therefore offer the opportunity for selectively targeting specific PDEs for treatment of specific disease states. The feasibility of these enzymes as drug targets is exemplified by the commercial and clinical successes of the erectile dysfunction drugs, sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra). PDE inhibitors are also currently available or in development for treatment of a variety of other pathological conditions. In this review the basic biochemical properties, cellular regulation, expression patterns, and physiological functions of the different PDE isoforms will be discussed. How these properties relate to the current and future development of PDE inhibitors as pharmacological agents is especially considered. PDEs hold great promise as drug targets and recent research advances make this an exciting time for the field of PDE research.

1,651 citations

Journal ArticleDOI
TL;DR: Although it seems to fulfill a distinctly tumor-promoting role in many types of cancer, NF-κB has a confounding role in certain tumors.
Abstract: Inflammation is a fundamental protective response that sometimes goes awry and becomes a major cofactor in the pathogenesis of many chronic human diseases, including cancer. Here we review the evolutionary relationship and opposing functions of the transcription factor NF-κB in inflammation and cancer. Although it seems to fulfill a distinctly tumor-promoting role in many types of cancer, NF-κB has a confounding role in certain tumors. Understanding the activity and function of NF-κB in the context of tumorigenesis is critical for its successful taming, an important challenge for modern cancer biology.

1,242 citations

Journal ArticleDOI
TL;DR: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts and this review attempts to aid the reader in the selection of the best choice of reaction conditions and ligand.
Abstract: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations.

1,241 citations

01 Sep 2010
TL;DR: In this paper, the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations for Pd-catalyzed amination reactions is discussed.
Abstract: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations.

966 citations