scispace - formally typeset
Search or ask a question
Author

William J. Pitz

Bio: William J. Pitz is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Combustion & Autoignition temperature. The author has an hindex of 75, co-authored 255 publications receiving 21290 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines, where the initial pressure ranged from 1-42 atm, the temperature from 550-1700 K, the equivalence ratio from 0.3-1.5, and nitrogen-argon dilution from 70-99%.

1,835 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of iso-octane in a jet-stirred reactor, flow reactors, shock tubes and in a motored engine.

1,279 citations

Journal ArticleDOI
TL;DR: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios as discussed by the authors.
Abstract: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios. Over the series of experiments numerically investigated, the temperature ranged from 298 to 2700 K, the pressure from 0.05 to 87 atm, and the equivalence ratios from 0.2 to 6. Ignition delay times, flame speeds, and species composition data provide for a stringent test of the chemical kinetic mechanism, all of which are simulated in the current study with varying success. A sensitivity analysis was carried out to determine which reactions were dominating the H2/O2 system at particular conditions of pressure, temperature, and fuel/oxygen/diluent ratios. Overall, good agreement was observed between the model and the wide range of experiments simulated. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 603–622, 2004

931 citations

Journal ArticleDOI
01 Jan 2011
TL;DR: In this article, an improved version of the kinetic model was used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation, focusing attention on the mixing effects of the fuel components.
Abstract: Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3–50 atm, 650–1200 K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

893 citations

Journal ArticleDOI
TL;DR: In this article, detailed chemical reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C8H18), n-nonane, n-decane, and n-hexadecane.

713 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The implementation of Open Babel is detailed, key advances in the 2.3 release are described, and a variety of uses are outlined both in terms of software products and scientific research, including applications far beyond simple format interconversion.
Abstract: A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org .

6,040 citations

Journal ArticleDOI
TL;DR: The Basis Set Exchange (BSE) is described, a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities.
Abstract: Basis sets are some of the most important input data for computational models in the chemistry, materials, biology, and other science domains that utilize computational quantum mechanics methods. Providing a shared, Web-accessible environment where researchers can not only download basis sets in their required format but browse the data, contribute new basis sets, and ultimately curate and manage the data as a community will facilitate growth of this resource and encourage sharing both data and knowledge. We describe the Basis Set Exchange (BSE), a Web portal that provides advanced browsing and download capabilities, facilities for contributing basis set data, and an environment that incorporates tools to foster development and interaction of communities. The BSE leverages and enables continued development of the basis set library originally assembled at the Environmental Molecular Sciences Laboratory.

2,642 citations

Journal ArticleDOI
TL;DR: In this article, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines, where the initial pressure ranged from 1-42 atm, the temperature from 550-1700 K, the equivalence ratio from 0.3-1.5, and nitrogen-argon dilution from 70-99%.

1,835 citations