scispace - formally typeset
W

William K. Wootters

Researcher at Williams College

Publications -  95
Citations -  46058

William K. Wootters is an academic researcher from Williams College. The author has contributed to research in topics: Quantum entanglement & Quantum state. The author has an hindex of 43, co-authored 93 publications receiving 41392 citations. Previous affiliations of William K. Wootters include Kigali Institute of Science and Technology & Université de Montréal.

Papers
More filters
Journal ArticleDOI

Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels

TL;DR: An unknown quantum state \ensuremath{\Vert}\ensure Math{\varphi}〉 can be disassembled into, then later reconstructed from, purely classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR) correlations.
Journal ArticleDOI

Entanglement of Formation of an Arbitrary State of Two Qubits

TL;DR: In this article, an explicit formula for the entanglement of formation of a pair of binary quantum objects (qubits) as a function of their density matrix was conjectured.
Journal ArticleDOI

Mixed State Entanglement and Quantum Error Correction

TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Journal ArticleDOI

A single quantum cannot be cloned

TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Journal ArticleDOI

Entanglement of a Pair of Quantum Bits

TL;DR: In this article, an exact formula for the entanglement of formation for all mixed states of two qubits having no more than two nonzero eigenvalues was given, and evidence suggests that the formula is valid for all states of this system.