scispace - formally typeset
Search or ask a question
Author

William O. Kermack

Bio: William O. Kermack is an academic researcher from Royal College of Physicians. The author has contributed to research in topics: Population & Quinoline. The author has an hindex of 14, co-authored 60 publications receiving 17389 citations. Previous affiliations of William O. Kermack include Royal College of Physicians of Edinburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population.
Abstract: (1) One of the most striking features in the study of epidemics is the difficulty of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population. It was with a view to obtaining more insight regarding the effects of the various factors which govern the spread of contagious epidemics that the present investigation was undertaken. Reference may here be made to the work of Ross and Hudson (1915-17) in which the same problem is attacked. The problem is here carried to a further stage, and it is considered from a point of view which is in one sense more general. The problem may be summarised as follows: One (or more) infected person is introduced into a community of individuals, more or less susceptible to the disease in question. The disease spreads from the affected to the unaffected by contact infection. Each infected person runs through the course of his sickness, and finally is removed from the number of those who are sick, by recovery or by death. The chances of recovery or death vary from day to day during the course of his illness. The chances that the affected may convey infection to the unaffected are likewise dependent upon the stage of the sickness. As the epidemic spreads, the number of unaffected members of the community becomes reduced. Since the course of an epidemic is short compared with the life of an individual, the population may be considered as remaining constant, except in as far as it is modified by deaths due to the epidemic disease itself. In the course of time the epidemic may come to an end. One of the most important probems in epidemiology is to ascertain whether this termination occurs only when no susceptible individuals are left, or whether the interplay of the various factors of infectivity, recovery and mortality, may result in termination, whilst many susceptible individuals are still present in the unaffected population. It is difficult to treat this problem in its most general aspect. In the present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.

8,238 citations

01 Jan 1927
TL;DR: The present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.
Abstract: (1) One of the most striking features in the study of epidemics is the difficulty of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population. It was with a view to obtaining more insight regarding the effects of the various factors which govern the spread of contagious epidemics that the present investigation was undertaken. Reference may here be made to the work of Ross and Hudson (1915-17) in which the same problem is attacked. The problem is here carried to a further stage, and it is considered from a point of view which is in one sense more general. The problem may be summarised as follows: One (or more) infected person is introduced into a community of individuals, more or less susceptible to the disease in question. The disease spreads from the affected to the unaffected by contact infection. Each infected person runs through the course of his sickness, and finally is removed from the number of those who are sick, by recovery or by death. The chances of recovery or death vary from day to day during the course of his illness. The chances that the affected may convey infection to the unaffected are likewise dependent upon the stage of the sickness. As the epidemic spreads, the number of unaffected members of the community becomes reduced. Since the course of an epidemic is short compared with the life of an individual, the population may be considered as remaining constant, except in as far as it is modified by deaths due to the epidemic disease itself. In the course of time the epidemic may come to an end. One of the most important probems in epidemiology is to ascertain whether this termination occurs only when no susceptible individuals are left, or whether the interplay of the various factors of infectivity, recovery and mortality, may result in termination, whilst many susceptible individuals are still present in the unaffected population. It is difficult to treat this problem in its most general aspect. In the present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.

7,769 citations

Journal ArticleDOI
TL;DR: A mathematical investigation has been made of the progress of an epidemic in a homogeneous population, finding a threshold density of population is found to exist, which depends upon the infectivity, recovery and death rates peculiar to the epidemic.

1,271 citations

Journal ArticleDOI
TL;DR: Under special cases investigated when either immigration or birth is operative in the supply of fresh individuals, as well as in the general case, only one steady state of disease is possible and it has been shown that in all cases, except one, the steady states are stable ones.
Abstract: In a previous communication an attempt was made to investigate mathe­matically the course of an epidemic in a closed population of susceptible individuals. In order to simplify the problem certain definite assumptions were made, namely, that all individuals were equally susceptible, and that death resulted, or complete immunity was conferred, as the result of an attack. The infectivity of the individual and his chances of death or recovery were represented by arbitrary functions, and the chance of a new infection occurring was assumed to be proportional to the product of the infected and susceptible members of the population. In spite of the introduction of the arbitrary functions, it was shown that in general a critical density of population existed, such that if the actual density was less than this, no epidemic could occur, but if it exceeded this by n an epidemic would appear on the introduction of a focus of infection, and further that if n was small relative to the population density, the size of the epidemic would be 2 n per unit area. It was shown that these conclusions could be readily extended to the case of a metaxenous disease, that is, one in which transmission takes place through an intermediate host. It is the purpose of the present paper to consider the effect of the continuous introduction of fresh susceptible individuals into the population. It appeared desirable to investigate this point, since it might make it possible to interpret certain aspects of the incidence of disease not only in human communities where there is usually an influx of fresh susceptible individuals either by immigration or by birth, but also in the animal experiments carried out by Topley and others—where fresh animals were introduced at a constant rate into the cages in which cases of disease were already present—from which certain definite results were obtained.

819 citations

Journal ArticleDOI
TL;DR: In this paper, a mathematical analysis of the prevalence of a disease in a population from which certain individuals are being removed as the result of the disease, whilst fresh individuals were being introduced as a result of birth or immigration.

425 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Threshold theorems involving the basic reproduction number, the contact number, and the replacement number $R$ are reviewed for classic SIR epidemic and endemic models and results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups.
Abstract: Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number $R$ are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

5,915 citations

Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations

Journal ArticleDOI
02 Aug 1979-Nature
TL;DR: Consideration is given to the relation between the ecology and evolution of the transmission processes and the overall dynamics, and to the mechanisms that can produce cyclic patterns, or multiple stable states, in the levels of infection in the host population.
Abstract: If the host population is taken to be a dynamic variable (rather than constant, as conventionally assumed), a wider understanding of the population biology of infectious diseases emerges. In this first part of a two-part article, mathematical models are developed, shown to fit data from laboratory experiments, and used to explore the evolutionary relations among transmission parameters. In the second part of the article, to be published in next week's issue, the models are extended to include indirectly transmitted infections, and the general implications for infectious diseases are considered.

2,652 citations

Journal ArticleDOI
TL;DR: The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

2,548 citations

Journal ArticleDOI
TL;DR: A series of major new developments in the BEAST 2 core platform and model hierarchy that have occurred since the first release of the software, culminating in the recent 2.5 release are described.
Abstract: Elaboration of Bayesian phylogenetic inference methods has continued at pace in recent years with major new advances in nearly all aspects of the joint modelling of evolutionary data. It is increasingly appreciated that some evolutionary questions can only be adequately answered by combining evidence from multiple independent sources of data, including genome sequences, sampling dates, phenotypic data, radiocarbon dates, fossil occurrences, and biogeographic range information among others. Including all relevant data into a single joint model is very challenging both conceptually and computationally. Advanced computational software packages that allow robust development of compatible (sub-)models which can be composed into a full model hierarchy have played a key role in these developments. Developing such software frameworks is increasingly a major scientific activity in its own right, and comes with specific challenges, from practical software design, development and engineering challenges to statistical and conceptual modelling challenges. BEAST 2 is one such computational software platform, and was first announced over 4 years ago. Here we describe a series of major new developments in the BEAST 2 core platform and model hierarchy that have occurred since the first release of the software, culminating in the recent 2.5 release.

2,045 citations