scispace - formally typeset
Search or ask a question
Author

William P. Robbins

Bio: William P. Robbins is an academic researcher from University of Minnesota. The author has contributed to research in topics: Actuator & Thin film. The author has an hindex of 21, co-authored 70 publications receiving 7377 citations.


Papers
More filters
Book
26 Jul 1989
TL;DR: In this paper, the authors present a simulation of power switch-mode converters for zero-voltage and/or zero-current switchings in power electronic converters and systems.
Abstract: Partial table of contents: Overview of Power Semiconductor Switches Computer Simulation of Power Electronic Converters and Systems GENERIC POWER ELECTRONIC CIRCUITS dc--dc Switch-Mode Converters Resonant Converters: Zero-Voltage and/or Zero-Current Switchings POWER SUPPLY APPLICATIONS Power Conditioners and Uninterruptible Power Supplies MOTOR DRIVE APPLICATIONS dc Motor Drives Induction Motor Drives Synchronous Motor Drives OTHER APPLICATIONS Residential and Industrial Applications Optimizing the Utility Interface with Power Electronic Systems SEMICONDUCTOR DEVICES Basic Semiconductor Physics Power Diodes Power MOSFETs Thyristors Emerging Devices and Circuits PRACTICAL CONVERTER DESIGN CONSIDERATIONS Snubber Circuits Gate and Base Drive Circuits Design of Magnetic Components Index

5,911 citations

Journal ArticleDOI
TL;DR: Key aspects of MEMS technology as it is applied to these three areas are described, along with some of the fabrication challenges.
Abstract: The application of microelectromechanical systems (MEMS) to medicine is described. Three types of biomedical devices are considered, including diagnostic microsystems, surgical microsystems, and therapeutic microsystems. The opportunities of MEMS miniaturization in these emerging disciplines are considered, with emphasis placed on the importance of the technology in providing a better outcome for the patient and a lower overall health care cost. Several case examples in each of these areas are described. Key aspects of MEMS technology as it is applied to these three areas are described, along with some of the fabrication challenges.

208 citations

Journal ArticleDOI
01 Aug 1994
TL;DR: In this article, the authors present a user's perspective of simulation in power electronic and motion control systems and provide a brief overview of the widely used simulation programs along with the challenges in modeling the semiconductor devices.
Abstract: This paper presents a users' perspective of simulation in power electronic and motion control systems. The rationale for simulation in research, education and in the design process, and the details of how simulation is carried out are discussed. Characteristics of a reliable simulation program are outlined and the hierarchical approach to simulation is stressed. Numerical solution issues in the simulation of "stiff" systems such as power electronics and motion control are discussed in general terms. A brief overview of the widely used simulation programs is provided along with the challenges in modeling the semiconductor devices. In conclusion, observations are made with respect to the future role and nature of computer simulations. >

186 citations

Journal ArticleDOI
TL;DR: In this paper, a new wireless power technique for micro-systems based on low frequency ( −3 at 2-3 kG) was proposed. But this method is not suitable for large-scale systems.
Abstract: This paper presents a new wireless powering technique for microsystems based on low frequency ( −3 at 2–3 kG). Comparing with other remote powering techniques, this method possesses much higher voltage generation efficiency per generator volume.

155 citations

Journal ArticleDOI
TL;DR: This restructuring of power electronics and electric machines/drives courses allows digital control to be integrated into first courses, thereby teaching students what they need to learn, making these courses appealing, and providing a seamless continuity to advanced courses.
Abstract: Since 1994, the University of Minnesota has been undertaking a long overdue restructuring of power electronics and electric machines/drives courses. This restructuring allows digital control to be integrated into first courses, thereby teaching students what they need to learn, making these courses appealing, and providing a seamless continuity to advanced courses. By a concise presentation in just two undergraduate courses, this restructuring motivates students to take related courses in programmable logic controllers, microcontrollers and digital signal processor applications. This ensures a first-rate education that is meaningful in the workplace as well as in graduate education leading to a research and development oriented career. This restructuring has several components to it. Outdated topics that waste time and mislead students are deleted. To integrate control in the first courses, unique approaches are developed to convey information more effectively. In the first course in power electronics, a building block is identified in commonly used power converter topologies in order to unify their analysis. In the field of electric drives, the use of space vectors is introduced on a physical basis to describe operation of ac machines in steady state in the first course, and to discuss their optimum control under dynamic conditions in the advanced course. Appropriate simulation software and software-reconfigurable hardware laboratories using a DSP-based rapid prototyping tool are used to support the analytical discussion.

103 citations


Cited by
More filters
Journal ArticleDOI
Abstract: Recent research activities on the linear magnetoelectric (ME) effect?induction of magnetization by an electric field or of polarization by a magnetic field?are reviewed. Beginning with a brief summary of the history of the ME effect since its prediction in 1894, the paper focuses on the present revival of the effect. Two major sources for 'large' ME effects are identified. (i) In composite materials the ME effect is generated as a product property of a magnetostrictive and a piezoelectric compound. A linear ME polarization is induced by a weak ac magnetic field oscillating in the presence of a strong dc bias field. The ME effect is large if the ME coefficient coupling the magnetic and electric fields is large. Experiments on sintered granular composites and on laminated layers of the constituents as well as theories on the interaction between the constituents are described. In the vicinity of electromechanical resonances a ME voltage coefficient of up to 90?V?cm?1?Oe?1 is achieved, which exceeds the ME response of single-phase compounds by 3?5 orders of magnitude. Microwave devices, sensors, transducers and heterogeneous read/write devices are among the suggested technical implementations of the composite ME effect. (ii) In multiferroics the internal magnetic and/or electric fields are enhanced by the presence of multiple long-range ordering. The ME effect is strong enough to trigger magnetic or electrical phase transitions. ME effects in multiferroics are thus 'large' if the corresponding contribution to the free energy is large. Clamped ME switching of electrical and magnetic domains, ferroelectric reorientation induced by applied magnetic fields and induction of ferromagnetic ordering in applied electric fields were observed. Mechanisms favouring multiferroicity are summarized, and multiferroics in reduced dimensions are discussed. In addition to composites and multiferroics, novel and exotic manifestations of ME behaviour are investigated. This includes (i) optical second harmonic generation as a tool to study magnetic, electrical and ME properties in one setup and with access to domain structures; (ii) ME effects in colossal magnetoresistive manganites, superconductors and phosphates of the LiMPO4 type; (iii) the concept of the toroidal moment as manifestation of a ME dipole moment; (iv) pronounced ME effects in photonic crystals with a possibility of electromagnetic unidirectionality. The review concludes with a summary and an outlook to the future development of magnetoelectrics research.

4,315 citations

Journal ArticleDOI
10 Dec 2002
TL;DR: The Z-source converter employs a unique impedance network to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source converters where a capacitor and inductor are used, respectively.
Abstract: This paper presents an impedance-source (or impedance-fed) power converter (abbreviated as Z-source converter) and its control method for implementing DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. The Z-source converter employs a unique impedance network (or circuit) to couple the converter main circuit to the power source, thus providing unique features that cannot be obtained in the traditional voltage-source (or voltage-fed) and current-source (or current-fed) converters where a capacitor and inductor are used, respectively. The Z-source converter overcomes the conceptual and theoretical barriers and limitations of the traditional voltage-source converter (abbreviated as V-source converter) and current-source converter (abbreviated as I-source converter) and provides a novel power conversion concept. The Z-source concept can be applied to all DC-to-AC, AC-to-DC, AC-to-AC, and DC-to-DC power conversion. To describe the operating principle and control, this paper focuses on an example: a Z-source inverter for DC-AC power conversion needed in fuel cell applications. Simulation and experimental results are presented to demonstrate the new features.

2,851 citations

Journal ArticleDOI
TL;DR: A comprehensive review of existing piezoelectric generators is presented in this paper, including impact coupled, resonant and human-based devices, including large scale discrete devices and wafer-scale integrated versions.
Abstract: This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric, electromagnetic and electrostatic. Piezoelectric generators employ active materials that generate a charge when mechanically stressed. A comprehensive review of existing piezoelectric generators is presented, including impact coupled, resonant and human-based devices. Electromagnetic generators employ electromagnetic induction arising from the relative motion between a magnetic flux gradient and a conductor. Electromagnetic generators presented in the literature are reviewed including large scale discrete devices and wafer-scale integrated versions. Electrostatic generators utilize the relative movement between electrically isolated charged capacitor plates to generate energy. The work done against the electrostatic force between the plates provides the harvested energy. Electrostatic-based generators are reviewed under the classifications of in-plane overlap varying, in-plane gap closing and out-of-plane gap closing; the Coulomb force parametric generator and electret-based generators are also covered. The coupling factor of each transduction mechanism is discussed and all the devices presented in the literature are summarized in tables classified by transduction type; conclusions are drawn as to the suitability of the various techniques.

2,834 citations

Journal ArticleDOI
TL;DR: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans as mentioned in this paper, and the use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement.
Abstract: The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of a disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. A number of sources of harvestable ambient energy exist, including waste heat, vibration, electromagnetic waves, wind, flowing water, and solar energy. While each of these sources of energy can be effectively used to power remote sensors, the structural and biological communities have placed an emphasis on scavenging vibrational energy with piezoelectric materials. This article will review recent literature in the field of power harvesting and present the current state of power harvesting in its drive to create completely self-powered devices.

2,438 citations

Journal ArticleDOI
TL;DR: In this article, power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems.
Abstract: The global electrical energy consumption is rising and there is a steady increase of the demand on the power capacity, efficient production, distribution and utilization of energy. The traditional power systems are changing globally, a large number of dispersed generation (DG) units, including both renewable and nonrenewable energy sources such as wind turbines, photovoltaic (PV) generators, fuel cells, small hydro, wave generators, and gas/steam powered combined heat and power stations, are being integrated into power systems at the distribution level. Power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems. This paper reviews the applications of power electronics in the integration of DG units, in particular, wind power, fuel cells and PV generators.

2,296 citations