scispace - formally typeset
Search or ask a question
Author

William R. Swindell

Bio: William R. Swindell is an academic researcher from Jewish Hospital. The author has contributed to research in topics: Psoriasis & Gene expression profiling. The author has an hindex of 32, co-authored 72 publications receiving 3851 citations. Previous affiliations of William R. Swindell include University of Michigan & Heritage College of Osteopathic Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used high-throughput complementary DNA sequencing (RNA-seq) to assay the transcriptomes of lesional psoriatic and normal skin, which revealed multiple modules of coordinately expressed epidermal differentiation genes, overlapping significantly with genes regulated by the long noncoding RNA TINCR.

292 citations

Journal ArticleDOI
TL;DR: It is found that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lnc RNAs are enriched for localization in the epidermal differentiation complex.
Abstract: Although analysis pipelines have been developed to use RNA-seq to identify long non-coding RNAs (lncRNAs), inference of their biological and pathological relevance remains a challenge. As a result, most transcriptome studies of autoimmune disease have only assessed protein-coding transcripts. We used RNA-seq data from 99 lesional psoriatic, 27 uninvolved psoriatic, and 90 normal skin biopsies, and applied computational approaches to identify and characterize expressed lncRNAs. We detect 2,942 previously annotated and 1,080 novel lncRNAs which are expected to be skin specific. Notably, over 40% of the novel lncRNAs are differentially expressed and the proportions of differentially expressed transcripts among protein-coding mRNAs and previously-annotated lncRNAs are lower in psoriasis lesions versus uninvolved or normal skin. We find that many lncRNAs, in particular those that are differentially expressed, are co-expressed with genes involved in immune related functions, and that novel lncRNAs are enriched for localization in the epidermal differentiation complex. We also identify distinct tissue-specific expression patterns and epigenetic profiles for novel lncRNAs, some of which are shown to be regulated by cytokine treatment in cultured human keratinocytes. Together, our results implicate many lncRNAs in the immunopathogenesis of psoriasis, and our results provide a resource for lncRNA studies in other autoimmune diseases.

196 citations

Journal ArticleDOI
TL;DR: expression patterns identified in this analysis characterize a generalized response of mammalian cells to CR and/or aging, which may be of importance in determining effects of CR on overall lifespan, or as factors that underlie age-related disease.
Abstract: Caloric restriction (CR) counters deleterious effects of aging and, for most mouse genotypes, increases mean and maximum lifespan. Previous analyses of microarray data have identified gene expression responses to CR that are shared among multiple mouse tissues, including the activation of anti-oxidant, tumor suppressor and anti-inflammatory pathways. These analyses have provided useful research directions, but have been restricted to a limited number of tissues, and have focused on individual genes, rather than whole-genome transcriptional networks. Furthermore, CR is thought to oppose age-associated gene expression patterns, but detailed statistical investigations of this hypothesis have not been carried out. Systemic effects of CR and aging were identified by examining transcriptional responses to CR in 17 mouse tissue types, as well as responses to aging in 22 tissues. CR broadly induced the expression of genes known to inhibit oxidative stress (e.g., Mt1, Mt2), inflammation (e.g., Nfkbia, Timp3) and tumorigenesis (e.g., Txnip, Zbtb16). Additionally, a network-based investigation revealed that CR regulates a large co-expression module containing genes associated with the metabolism and splicing of mRNA (e.g., Cpsf6, Sfpq, Sfrs18). The effects of aging were, to a considerable degree, similar among groups of co-expressed genes. Age-related gene expression patterns characteristic of most mouse tissues were identified, including up regulation of granulin (Grn) and secreted phosphoprotein 1 (Spp1). The transcriptional association between CR and aging varied at different levels of analysis. With respect to gene subsets associated with certain biological processes (e.g., immunity and inflammation), CR opposed age-associated expression patterns. However, among all genes, global transcriptional effects of CR were only weakly related to those of aging. The study of aging, and of interventions thought to combat aging, has much to gain from data-driven and unbiased genomic investigations. Expression patterns identified in this analysis characterize a generalized response of mammalian cells to CR and/or aging. These patterns may be of importance in determining effects of CR on overall lifespan, or as factors that underlie age-related disease. The association between CR and aging warrants further study, but most evidence indicates that CR does not induce a genome-wide "reversal" of age-associated gene expression patterns.

159 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: The developments in PRIDE resources and related tools are summarized and a brief update on the resources under development 'PRIDE Cluster' and 'PRide Proteomes', which provide a complementary view and quality-scored information of the peptide and protein identification data available inPRIDE Archive are given.
Abstract: The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data Since the beginning of 2014, PRIDE Archive (http://wwwebiacuk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013 PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month) We outline some statistics on the current PRIDE Archive data contents We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool Finally, we will give a brief update on the resources under development 'PRIDE Cluster' and 'PRIDE Proteomes', which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive

3,375 citations

Journal ArticleDOI
16 Apr 2010-Science
TL;DR: Dietary restriction and reduced activity of nutrient-sensing pathways may slow aging by similar mechanisms, which have been conserved during evolution, and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
Abstract: When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.

2,522 citations

Journal ArticleDOI
24 Mar 2010-Nature
TL;DR: The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more, which means that over evolutionary time mutations have increased lifespan more than 2,000-fold.
Abstract: The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.

2,466 citations