scispace - formally typeset
Search or ask a question
Author

William Sebastian

Bio: William Sebastian is an academic researcher from West Virginia School of Osteopathic Medicine. The author has an hindex of 1, co-authored 1 publications receiving 10 citations.

Papers
More filters
Journal ArticleDOI
09 Jul 2021
TL;DR: The authors in this paper reviewed and provided crucial information on SARS-CoV-2 virology, vaccines and drugs being used and developed for its prevention and treatment, as well as important variant strains.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the coronavirus disease 2019 (COVID-19), has caused more than 179 million infections and 3.8 million deaths worldwide. Throughout the past year, multiple vaccines have already been developed and used, while some others are in the process of being developed. However, the emergence of new mutant strains of SARS-CoV-2 that have demonstrated immune-evading characteristics and an increase in infective capabilities leads to potential ineffectiveness of the vaccines against these variants. The purpose of this review article is to highlight the current understanding of the immunological mechanisms of the virus and vaccines, as well as to investigate some key variants and mutations of the virus driving the current pandemic and their impacts on current management guidelines. We also discussed new technologies being developed for the prevention, treatment, and detection of SARS-CoV-2. In this paper, we thoroughly reviewed and provided crucial information on SARS-CoV-2 virology, vaccines and drugs being used and developed for its prevention and treatment, as well as important variant strains. Our review paper will be beneficial to health care professionals and researchers so they can have a better understanding of the basic sciences, prevention, and clinical treatment of COVID-19 during the pandemic. This paper consists of the most updated information that has been available as of June 21, 2021.

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanism of SARS-CoV-2 infection and the subsequent immunological events related to excessive cytokine production and inflammatory responses associated with ACE2-AngII signaling are summarized.
Abstract: The COVID-19 outbreak is emerging as a significant public health challenge. Excessive production of proinflammatory cytokines, also known as cytokine storm, is a severe clinical syndrome known to develop as a complication of infectious or inflammatory diseases. Clinical evidence suggests that the occurrence of cytokine storm in severe acute respiratory syndrome secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is closely associated with the rapid deterioration and high mortality of severe cases. In this review, we aim to summarize the mechanism of SARS-CoV-2 infection and the subsequent immunological events related to excessive cytokine production and inflammatory responses associated with ACE2-AngII signaling. An overview of the diagnosis and an update on current therapeutic regimens and vaccinations is also provided.

45 citations

Journal ArticleDOI
TL;DR: Key points on the future SARS-CoV-2 vaccine research and development are discussed, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.
Abstract: Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.

39 citations

Journal ArticleDOI
TL;DR: In this article , a hybrid compound library of 72 phytocompounds from two antiviral medicinal plants (Baccaurea ramiflora and Bergenia ciliata) was computationally investigated for their inhibitory potential against SARS-CoV-2 Mpro.

19 citations

Journal ArticleDOI
01 Jun 2022-Vaccines
TL;DR: Key information is examined and provided on SARS-CoV-2 VOCs, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the coronavirus family and is the cause of coronavirus disease 2019 (COVID-19). As of May 2022, it had caused more than 500 million infections and more than 6 million deaths worldwide. Several vaccines have been produced and tested over the last two years. The SARS-CoV-2 virus, on the other hand, has mutated over time, resulting in genetic variation in the population of circulating variants during the COVID-19 pandemic. It has also shown immune-evading characteristics, suggesting that vaccinations against these variants could be potentially ineffective. The purpose of this review article is to investigate the key variants of concern (VOCs) and mutations of the virus driving the current pandemic, as well as to explore the transmission rates of SARS-CoV-2 VOCs in relation to epidemiological factors and to compare the virus’s transmission rate to that of prior coronaviruses. We examined and provided key information on SARS-CoV-2 VOCs in this study, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.

19 citations