scispace - formally typeset
Search or ask a question
Author

William W. Cohen

Other affiliations: Alcatel-Lucent, Baidu, AT&T Labs  ...read more
Bio: William W. Cohen is an academic researcher from Google. The author has contributed to research in topics: Question answering & Information extraction. The author has an hindex of 85, co-authored 384 publications receiving 31495 citations. Previous affiliations of William W. Cohen include Alcatel-Lucent & Baidu.


Papers
More filters
Book ChapterDOI
William W. Cohen1
09 Jul 1995
TL;DR: This paper evaluates the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems, and proposes a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5 and C 4.5rules with respect to error rates, but much more efficient on large samples.
Abstract: Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.

4,081 citations

Proceedings Article
09 Aug 2003
TL;DR: Using an open-source, Java toolkit of name-matching methods, the authors experimentally compare string distance metrics on the task of matching entity names and find that the best performing method is a hybrid scheme combining a TFIDF weighting scheme, which is widely used in information retrieval, with the Jaro-Winkler string-distance scheme.
Abstract: Using an open-source, Java toolkit of name-matching methods, we experimentally compare string distance metrics on the task of matching entity names We investigate a number of different metrics proposed by different communities, including edit-distance metrics, fast heuristic string comparators, token-based distance metrics, and hybrid methods Overall, the best-performing method is a hybrid scheme combining a TFIDF weighting scheme, which is widely used in information retrieval, with the Jaro-Winkler string-distance scheme, which was developed in the probabilistic record linkage community

1,355 citations

Proceedings Article
01 Jul 1998
TL;DR: This paper presented an inductive learning approach to recommendation that is able to use both ratings information and other forms of information about each artifact in predicting user preferences, and showed that their method outperforms an existing social-filtering method in the domain of movie recommendations on a dataset of more than 45,000 movie ratings collected from a community of over 250 users.
Abstract: Recommendation systems make suggestions about artifacts to a user. For instance, they may predict whether a user would be interested in seeing a particular movie. Social recomendation methods collect ratings of artifacts from many individuals, and use nearest-neighbor techniques to make recommendations to a user concerning new artifacts. However, these methods do not use the significant amount of other information that is often available about the nature of each artifact - such as cast lists o r movie reviews, for example. This paper presents an inductive learning approach to recommendation that is able to use both ratings information and other forms of information about each artifact in predicting user preferences. We show that our method outperforms an existing social-filtering method in the domain of movie recommendations on a dataset of more than 45,000 movie ratings collected from a community of over 250 users.

1,065 citations

Proceedings Article
19 Jun 2016
TL;DR: In this article, a semi-supervised learning framework based on graph embeddings is proposed, where given a graph between instances, an embedding for each instance is trained to jointly predict the class label and the neighborhood context in the graph.
Abstract: We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embeddings and input feature vectors, while in the inductive variant, the embeddings are defined as a parametric function of the feature vectors, so predictions can be made on instances not seen during training. On a large and diverse set of benchmark tasks, including text classification, distantly supervised entity extraction, and entity classification, we show improved performance over many of the existing models.

1,012 citations

Proceedings ArticleDOI
25 Sep 2018
TL;DR: HotpotQA as discussed by the authors is a dataset with 113k Wikipedia-based question-answer pairs with four key features: finding and reasoning over multiple supporting documents to answer; the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; providing sentence-level supporting facts required for reasoning; and offering a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison.
Abstract: Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems’ ability to extract relevant facts and perform necessary comparison We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions

850 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: In this article, a method of over-sampling the minority class involves creating synthetic minority class examples, which is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
Abstract: An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of oversampling the minority (abnormal)cla ss and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space)tha n only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space)t han varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC)and the ROC convex hull strategy.

17,313 citations

Posted Content
TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Abstract: We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.

15,696 citations