scispace - formally typeset
Search or ask a question
Author

Willy Hereman

Bio: Willy Hereman is an academic researcher from Colorado School of Mines. The author has contributed to research in topics: Nonlinear system & Partial differential equation. The author has an hindex of 34, co-authored 107 publications receiving 4472 citations. Previous affiliations of Willy Hereman include Stellenbosch University & University of Iowa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a systemized version of the tanh method is used to solve particular evolution and wave equations, where the boundary conditions are implemented in this expansion, and the associated velocity can then be determined a priori, provided the solution vanishes at infinity.
Abstract: A systemized version of the tanh method is used to solve particular evolution and wave equations. If one deals with conservative systems, one seeks travelling wave solutions in the form of a finite series in tanh. If present, boundary conditions are implemented in this expansion. The associated velocity can then be determined a priori, provided the solution vanishes at infinity. Hence, exact closed form solutions can be obtained easily in various cases.

964 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified version of Hirota's method is used to find closed-form soliton solutions of the Fitzhugh-Nagumo equation with convection term and an evolution equation due to Calogero.

382 citations

Journal ArticleDOI
TL;DR: In this paper, a general wave profile, with a perturbative solitary-wave contribution superposed, was obtained for a particular choice of the parameters, and a comparison with the exact solution was made.
Abstract: With the aid of the tanh method, nonlinear wave equations are solved in a perturbative way. First, the KdVBurgers equation is investigated in the limit of weak dispersion. As a result, a general shock wave profile, with a perturbative solitary-wave contribution superposed, emerges. For a particular choice of the parameters, a comparison with the exact solution is made. Further, the MKdVBurgers is investigated in the same limit and similar results are obtained.

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic and formal approach toward finding solitary wave solutions of nonlinear evolution and wave equations from the real exponential solutions of the underlying linear equations, where the physical concept is one of the mixing of these elementary solutions through the nonlinearities in the system.
Abstract: The authors present a systematic and formal approach toward finding solitary wave solutions of nonlinear evolution and wave equations from the real exponential solutions of the underlying linear equations. The physical concept is one of the mixing of these elementary solutions through the nonlinearities in the system. The emphasis is, however, on the mathematical aspects, i.e. the formal procedure necessary to find single solitary wave solutions. By means of examples it is shown how various cases of pulse-type and kink-type solutions are to be obtained by this method. An exhaustive list of equations so treated is presented in tabular form, together with the particular intermediate relations necessary for deriving their solutions. The extension of the technique to construct N-soliton solutions and indicate connections with other existing methods is outlined.

176 citations

Journal ArticleDOI
TL;DR: A new algorithm for the symbolic computation of polynomial conserved densities for systems of nonlinear evolution equations is presented and the code is tested on several well-known partial differential equations from soliton theory.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
Engui Fan1
TL;DR: In this article, an extended tanh-function method is proposed for constructing multiple travelling wave solutions of nonlinear partial differential equations (PDEs) in a unified way, and the key idea of this method is to take full advantage of a Riccati equation involving a parameter and use its solutions to replace the tanh function.

1,830 citations

Journal ArticleDOI
TL;DR: The study of waves can be traced back to antiquity where philosophers, such as Pythagoras, studied the relation of pitch and length of string in musical instruments and the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt in his treatise Theory of Sound.
Abstract: The study of waves can be traced back to antiquity where philosophers, such as Pythagoras (c.560-480 BC), studied the relation of pitch and length of string in musical instruments. However, it was not until the work of Giovani Benedetti (1530-90), Isaac Beeckman (1588-1637) and Galileo (1564-1642) that the relationship between pitch and frequency was discovered. This started the science of acoustics, a term coined by Joseph Sauveur (1653-1716) who showed that strings can vibrate simultaneously at a fundamental frequency and at integral multiples that he called harmonics. Isaac Newton (1642-1727) was the first to calculate the speed of sound in his Principia. However, he assumed isothermal conditions so his value was too low compared with measured values. This discrepancy was resolved by Laplace (1749-1827) when he included adiabatic heating and cooling effects. The first analytical solution for a vibrating string was given by Brook Taylor (1685-1731). After this, advances were made by Daniel Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d’Alembert (1717-83) who found the first solution to the linear wave equation, see section (3.2). Whilst others had shown that a wave can be represented as a sum of simple harmonic oscillations, it was Joseph Fourier (1768-1830) who conjectured that arbitrary functions can be represented by the superposition of an infinite sum of sines and cosines now known as the Fourier series. However, whilst his conjecture was controversial and not widely accepted at the time, Dirichlet subsequently provided a proof, in 1828, that all functions satisfying Dirichlet’s conditions (i.e. non-pathological piecewise continuous) could be represented by a convergent Fourier series. Finally, the subject of classical acoustics was laid down and presented as a coherent whole by John William Strutt (Lord Rayleigh, 1832-1901) in his treatise Theory of Sound. The science of modern acoustics has now moved into such diverse areas as sonar, auditoria, electronic amplifiers, etc.

1,428 citations

Journal ArticleDOI
28 Jan 1983-Science
TL;DR: Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.
Abstract: The potential for sea ice-albedo feedback to give rise to nonlinear climate change in the Arctic Ocean – defined as a nonlinear relationship between polar and global temperature change or, equivalently, a time-varying polar amplification – is explored in IPCC AR4 climate models. Five models supplying SRES A1B ensembles for the 21 st century are examined and very linear relationships are found between polar and global temperatures (indicating linear Arctic Ocean climate change), and between polar temperature and albedo (the potential source of nonlinearity). Two of the climate models have Arctic Ocean simulations that become annually sea ice-free under the stronger CO 2 increase to quadrupling forcing. Both of these runs show increases in polar amplification at polar temperatures above-5 o C and one exhibits heat budget changes that are consistent with the small ice cap instability of simple energy balance models. Both models show linear warming up to a polar temperature of-5 o C, well above the disappearance of their September ice covers at about-9 o C. Below-5 o C, surface albedo decreases smoothly as reductions move, progressively, to earlier parts of the sunlit period. Atmospheric heat transport exerts a strong cooling effect during the transition to annually ice-free conditions. Specialized experiments with atmosphere and coupled models show that the main damping mechanism for sea ice region surface temperature is reduced upward heat flux through the adjacent ice-free oceans resulting in reduced atmospheric heat transport into the region.

1,356 citations

Journal ArticleDOI
TL;DR: In this article, a systemized version of the tanh method is used to solve particular evolution and wave equations, where the boundary conditions are implemented in this expansion, and the associated velocity can then be determined a priori, provided the solution vanishes at infinity.
Abstract: A systemized version of the tanh method is used to solve particular evolution and wave equations. If one deals with conservative systems, one seeks travelling wave solutions in the form of a finite series in tanh. If present, boundary conditions are implemented in this expansion. The associated velocity can then be determined a priori, provided the solution vanishes at infinity. Hence, exact closed form solutions can be obtained easily in various cases.

964 citations