scispace - formally typeset
Search or ask a question
Author

Wilson A. Crichton

Bio: Wilson A. Crichton is an academic researcher from European Synchrotron Radiation Facility. The author has contributed to research in topics: Powder diffraction & Diamond anvil cell. The author has an hindex of 39, co-authored 166 publications receiving 4624 citations. Previous affiliations of Wilson A. Crichton include Centre national de la recherche scientifique & University College London.


Papers
More filters
Journal ArticleDOI
TL;DR: The atomic dynamics of the glass to that of the relevant crystal suggests the identical nature of the two features, including the boson peak, which matches the TA singularity in energy and height.
Abstract: We compare the atomic dynamics of the glass to that of the relevant crystal. In the spectra of inelastic scattering, the boson peak of the glass appears higher than the transverse acoustic (TA) singularity of the crystal. However, the density of states shows that they have the same number of states. Increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.

238 citations

Journal ArticleDOI
TL;DR: An in situ x-ray diffraction experiment on phosphorus is performed to characterize the liquid-liquid transition which occurs at high temperature and pressure, and it is concluded that this is a first-order transition between a dense molecular fluid and a polymeric liquid.
Abstract: An in situ x-ray diffraction experiment has been performed on phosphorus to characterize the liquid-liquid transition which occurs at high temperature and pressure. The transition line has been measured over an extended temperature range up to 2200 degrees C at 0.3 GPa. From the shape of this line, a thermodynamic characterization of the transition is obtained in terms of latent heat and internal energy change. Moreover, the addition of the high-pressure high-temperature data to the known phase diagram of phosphorus allows us to conclude that this is a first-order transition between a dense molecular fluid and a polymeric liquid.

153 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report experimental evidence for pressure instabilities in the multiferroic BiFeO model and reveal two structural phase transitions around 3.5 and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source.
Abstract: We report experimental evidence for pressure instabilities in the model multiferroic ${\text{BiFeO}}_{3}$ and, namely, reveal two structural phase transitions around 3.5 and 10 GPa by using diffraction and far-infrared spectroscopy at a synchrotron source. The intermediate phase crystallizes in a monoclinic space group, with octahedra tilts and small cation displacements. When the pressure is increased further the cation displacements (and thus the polar character) of ${\text{BiFeO}}_{3}$ is suppressed above 10 GPa. The nonpolar orthorhombic $Pnma$ structure observed above 10 GPa is in agreement with recent theoretical ab initio prediction, while the intermediate monoclinic phase has not been predicted theoretically.

146 citations

Journal ArticleDOI
15 Jun 2006-Nature
TL;DR: The class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2, which is structurally homologous to the other group IV dioxide glasses.
Abstract: High pressure modifies the interatomic and intermolecular interactions in condensed matter, profoundly altering the physical and chemical properties of materials. This is dramatically demonstrated in a newly discovered form of carbon dioxide, dubbed a-carbonia. This nonmolecular amorphous carbon dioxide is a high pressure modification of the CO2 molecular solid. It is a glassy material, homologous to amorphous silica (SiO2) and germania (GeO2). The discovery could initiate new research areas in the solid-state chemistry of light elements. Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure1,2,3,4,5,6,7,8,9. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations9. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call ‘a-carbonia’. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C–O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics9, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

140 citations

Journal ArticleDOI
TL;DR: It is shown that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.
Abstract: We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms, is presented, where the role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described.

2,858 citations

Journal ArticleDOI
TL;DR: An efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm, which allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input.
Abstract: We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high (nearly 100%) success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures (stable phases: epsilon-oxygen, new phase of sulphur, new metastable phases of carbon, sulphur and nitrogen, stable and metastable phases of CaCO3). Physical reasons for the success of this methodology are discussed.

1,945 citations

Journal ArticleDOI
TL;DR: In this paper, the Tait equation of state (TEOS) was used to model the temperature dependence of both the thermal expansion and bulk modulus in a consistent way, which has led to improved fitting of the phase equilibrium experiments.
Abstract: The thermodynamic properties of 254 end-members, including 210 mineral end-members, 18 silicate liquid end-members and 26 aqueous fluid species are presented in a revised and updated internally consistent thermodynamic data set. The PVT properties of the data set phases are now based on a modified Tait equation of state (EOS) for the solids and the Pitzer & Sterner (1995) equation for gaseous components. Thermal expansion and compressibility are linked within the modified Tait EOS (TEOS) by a thermal pressure formulation using an Einstein temperature to model the temperature dependence of both the thermal expansion and bulk modulus in a consistent way. The new EOS has led to improved fitting of the phase equilibrium experiments. Many new end-members have been added, including several deep mantle phases and, for the first time, sulphur-bearing minerals. Silicate liquid end-members are in good agreement with both phase equilibrium experiments and measured heat of melting. The new dataset considerably enhances the capabilities for thermodynamic calculation on rocks, melts and aqueous fluids under crustal to deep mantle conditions. Implementations are already available in thermocalc to take advantage of the new data set and its methodologies, as illustrated by example calculations on sapphirine-bearing equilibria, sulphur-bearing equilibria and calculations to 300 kbar and 2000 °C to extend to lower mantle conditions.

1,651 citations

Journal ArticleDOI
TL;DR: On the bicentenary of the publication of Poisson's Traité de Mécanique, the continuing relevance of Poissons's ratio in the understanding of the mechanical characteristics of modern materials is reviewed.
Abstract: In comparing a material's resistance to distort under mechanical load rather than to alter in volume, Poisson's ratio offers the fundamental metric by which to compare the performance of any material when strained elastically. The numerical limits are set by ½ and -1, between which all stable isotropic materials are found. With new experiments, computational methods and routes to materials synthesis, we assess what Poisson's ratio means in the contemporary understanding of the mechanical characteristics of modern materials. Central to these recent advances, we emphasize the significance of relationships outside the elastic limit between Poisson's ratio and densification, connectivity, ductility and the toughness of solids; and their association with the dynamic properties of the liquids from which they were condensed and into which they melt.

1,625 citations

Posted Content
TL;DR: In this paper, an efficient and reliable methodology for crystal structure prediction, merging ab initio total energy calculations and a specifically devised evolutionary algorithm, was developed, which allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input.
Abstract: We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures. Physical reasons for the success of this methodology are discussed.

1,584 citations