scispace - formally typeset
Search or ask a question
Author

Wim Nevelsteen

Bio: Wim Nevelsteen is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Universal hashing & Dynamic perfect hashing. The author has an hindex of 1, co-authored 1 publications receiving 86 citations.

Papers
More filters
Book ChapterDOI
02 May 1999
TL;DR: This paper compares the parameters sizes and software performance of several recent constructions for universal hash functions: bucket hashing, polynomial hashing, Toeplitz hashing, division hashing, evaluation hashing, and MMH hashing to find constructions that offer a comparable security level.
Abstract: This paper compares the parameters sizes and software performance of several recent constructions for universal hash functions: bucket hashing, polynomial hashing, Toeplitz hashing, division hashing, evaluation hashing, and MMH hashing. An objective comparison between these widely varying approaches is achieved by defining constructions that offer a comparable security level. It is also demonstrated how the security of these constructions compares favorably to existing MAC algorithms, the security of which is less understood.

87 citations


Cited by
More filters
Book ChapterDOI
10 Sep 2007
TL;DR: New protocols for the IP protection problem on FPGAs are proposed and the first construction of a PUF intrinsic to current FPGA based on SRAM memory randomness present on current FFPAs is provided.
Abstract: In recent years, IP protection of FPGA hardware designs has become a requirement for many IP vendors. In [34], Simpson and Schaumont proposed a fundamentally different approach to IP protection on FPGAs based on the use of Physical Unclonable Functions (PUFs). Their work only assumes the existence of a PUF on the FPGAs without actually proposing a PUF construction. In this paper, we propose new protocols for the IP protection problem on FPGAs and provide the first construction of a PUF intrinsic to current FPGAs based on SRAM memory randomness present on current FPGAs. We analyze SRAM-based PUF statistical properties and investigate the trade offs that can be made when implementing a fuzzy extractor.

1,235 citations

Proceedings ArticleDOI
09 Nov 2009
TL;DR: The HighAvailability and Integrity Layer (HAIL) as discussed by the authors is a distributed cryptographic system that allows a set of servers to prove to a client that a stored file is intact and retrievable.
Abstract: We introduce HAIL (High-Availability and Integrity Layer), a distributed cryptographic system that allows a set of servers to prove to a client that a stored file is intact and retrievable. HAIL strengthens, formally unifies, and streamlines distinct approaches from the cryptographic and distributed-systems communities. Proofs in HAIL are efficiently computable by servers and highly compact---typically tens or hundreds of bytes, irrespective of file size. HAIL cryptographically verifies and reactively reallocates file shares. It is robust against an active, mobile adversary, i.e., one that may progressively corrupt the full set of servers. We propose a strong, formal adversarial model for HAIL, and rigorous analysis and parameter choices. We show how HAIL improves on the security and efficiency of existing tools, like Proofs of Retrievability (PORs) deployed on individual servers. We also report on a prototype implementation.

759 citations

Book ChapterDOI
15 Aug 1999
TL;DR: A message authentication algorithm, UMAC, which can authenticate messages roughly an order of magnitude faster than current practice (e.g., HMAC-SHA1), and about twice as fast as times previously reported for the universal hash-function family MMH.
Abstract: We describe a message authentication algorithm, UMAC, which can authenticate messages (in software, on contemporary machines) roughly an order of magnitude faster than current practice (e.g., HMAC-SHA1), and about twice as fast as times previously reported for the universal hash-function family MMH. To achieve such speeds, UMAC uses a new universal hash-function family, NH, and a design which allows effective exploitation of SIMD parallelism. The "cryptographic" work of UMAC is done using standard primitives of the user's choice, such as a block cipher or cryptographic hash function; no new heuristic primitives are developed here. Instead, the security of UMAC is rigorously proven, in the sense of giving exact and quantitatively strong results which demonstrate an inability to forge UMAC-authenticated messages assuming an inability to break the underlying cryptographic primitive. Unlike conventional, inherently serial MACs, UMAC is parallelizable, and will have ever-faster implementation speeds as machines offer up increasing amounts of parallelism. We envision UMAC as a practical algorithm for next-generation message authentication.

419 citations

Book ChapterDOI
21 Feb 2005
TL;DR: The security of Poly1305-AES is very close to the security of AES; the security gap is at most 14D⌈L/16⌉/2106 if messages have at most L bytes, the attacker sees at most 264 authenticated messages, and the attacker attempts D forgeries.
Abstract: Poly1305-AES is a state-of-the-art message-authentication code suitable for a wide variety of applications. Poly1305-AES computes a 16-byte authenticator of a variable-length message, using a 16-byte AES key, a 16-byte additional key, and a 16-byte nonce. The security of Poly1305-AES is very close to the security of AES; the security gap is at most 14D⌈L/16⌉/2106 if messages have at most L bytes, the attacker sees at most 264 authenticated messages, and the attacker attempts D forgeries. Poly1305-AES can be computed at extremely high speed: for example, fewer than 3.1l+780 Athlon cycles for an l-byte message. This speed is achieved without precomputation; consequently, 1000 keys can be handled simultaneously without cache misses. Special-purpose hardware can compute Poly1305-AES at even higher speed. Poly1305-AES is parallelizable, incremental, and not subject to any intellectual-property claims.

371 citations

Journal Article
TL;DR: In this paper, the authors describe a message authentication algorithm, UMAC, which can authenticate messages (in software, on contemporary machines) roughly an order of magnitude faster than current practice (e.g., HMAC-SHA1), and about twice as fast as times previously reported for the universal hash function family MMH.
Abstract: We describe a message authentication algorithm, UMAC, which can authenticate messages (in software, on contemporary machines) roughly an order of magnitude faster than current practice (e.g., HMAC-SHA1), and about twice as fast as times previously reported for the universal hash-function family MMH. To achieve such speeds, UMAC uses a new universal hash-function family, NH, and a design which allows effective exploitation of SIMD parallelism The cryptographic work of UMAC is done using standard primitives of the user's choice, such as a block cipher or cryptographic hash function; no new heuristic primitives are developed here. Instead, the security of UMAC is rigorously proven, in the sense of giving exact and quantitatively strong results which demonstrate an inability to forge UMAC-authenticated messages assuming an inability to break the underlying cryptographic primitive. Unlike conventional, inherently serial MACs, UMAC is parallelizable, and will have ever-faster implementation speeds as machines offer up increasing amounts of parallelism. We envision UMAC as a practical algorithm for next-generation message authentication.

359 citations