scispace - formally typeset
Search or ask a question
Author

Winfried Boos

Bio: Winfried Boos is an academic researcher from University of Konstanz. The author has contributed to research in topics: Maltose & Periplasmic space. The author has an hindex of 55, co-authored 176 publications receiving 9542 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The maltose system of Escherichia coli offers an unusually rich set of enzymes, transporters, and regulators as objects of study, and basic issues that require clarification concerning the mechanism of MalT-mediated activation, repression by the transporter, biosynthesis and assembly of the outer membrane and inner membrane transporter proteins, and interrelationships between the mal enzymes and those of glucose and glycogen metabolism.
Abstract: The maltose system of Escherichia coli offers an unusually rich set of enzymes, transporters, and regulators as objects of study. This system is responsible for the uptake and metabolism of glucose polymers (maltodextrins), which must be a preferred class of nutrients for E. coli in both mammalian hosts and in the environment. Because the metabolism of glucose polymers must be coordinated with both the anabolic and catabolic uses of glucose and glycogen, an intricate set of regulatory mechanisms controls the expression of mal genes, the activity of the maltose transporter, and the activities of the maltose/maltodextrin catabolic enzymes. The ease of isolating many of the mal gene products has contributed greatly to the understanding of the structures and functions of several classes of proteins. Not only was the outer membrane maltoporin, LamB, or the phage lambda receptor, the first virus receptor to be isolated, but also its three-dimensional structure, together with extensive knowledge of functional sites for ligand binding as well as for phage λ binding, has led to a relatively complete description of this sugar-specific aqueous channel. The periplasmic maltose binding protein (MBP) has been studied with respect to its role in both maltose transport and maltose taxis. Again, the combination of structural and functional information has led to a significant understanding of how this soluble receptor participates in signaling the presence of sugar to the chemosensory apparatus as well as how it participates in sugar transport. The maltose transporter belongs to the ATP binding cassette family, and although its structure is not yet known at atomic resolution, there is some insight into the structures of several functional sites, including those that are involved in interactions with MBP and recognition of substrates and ATP. A particularly astonishing discovery is the direct participation of the transporter in transcriptional control of the mal regulon. The MalT protein activates transcription at all mal promoters. A subset also requires the cyclic AMP receptor protein for transcription. The MalT protein requires maltotriose and ATP as ligands for binding to a dodecanucleotide MalT box that appears in multiple copies upstream of all mal promoters. Recent data indicate that the ATP binding cassette transporter subunit MalK can directly inhibit MalT when the transporter is inactive due to the absence of substrate. Despite this wealth of knowledge, there are still basic issues that require clarification concerning the mechanism of MalT-mediated activation, repression by the transporter, biosynthesis and assembly of the outer membrane and inner membrane transporter proteins, and interrelationships between the mal enzymes and those of glucose and glycogen metabolism.

635 citations

Journal ArticleDOI
TL;DR: One of the major proteins of the outer membrane of Escherichia coli, the matrix protein (porin), has been isolated by detergent solubilisation and the findings are consistent with the assumption that the protein forms large aqueous channels in the membrane.

503 citations

Journal ArticleDOI
TL;DR: It is shown that the genes otsA, otsB, treA, and osmB, previously known to be osmotically regulated, are also induced during transition into stationary phase in a sigma S-dependent manner.
Abstract: The rpoS (katF) gene of Escherichia coli encodes a putative sigma factor (sigma S) required for the expression of a variety of stationary phase-induced genes, for the development of stationary-phase stress resistance, and for long-term starvation survival (R. Lange and R. Hengge-Aronis, Mol. Microbiol. 5:49-59, 1991). Here we show that the genes otsA, otsB, treA, and osmB, previously known to be osmotically regulated, are also induced during transition into stationary phase in a sigma S-dependent manner. otsA and otsB, which encode trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase, respectively, are involved in sigma S-dependent stationary-phase thermotolerance. Neither sigma S nor trehalose, however, is required for the development of adaptive thermotolerance in growing cells, which might be controlled by sigma E.

350 citations

Journal ArticleDOI
TL;DR: The crystal structure of this dimer showing two bound pyrophosphate molecules at 1.9 Å resolution is reported, and significant deviation from 2‐fold symmetry is seen at the interface of the dimer and in the regions corresponding to those residues known to be in contact with the translocation pore.
Abstract: The members of the ABC transporter family transport a wide variety of molecules into or out of cells and cellular compartments. Apart from a translocation pore, each member possesses two similar nucleoside triphosphate-binding subunits or domains in order to couple the energy-providing reaction with transport. In the maltose transporter of several Gram-negative bacteria and the archaeon Thermo coccus litoralis, the nucleoside triphosphate-binding subunit contains a C-terminal regulatory domain. A dimer of the subunit is attached cytoplasmically to the translocation pore. Here we report the crystal structure of this dimer showing two bound pyrophosphate molecules at 1.9 A resolution. The dimer forms by association of the ATPase domains, with the two regulatory domains attached at opposite poles. Significant deviation from 2-fold symmetry is seen at the interface of the dimer and in the regions corresponding to those residues known to be in contact with the translocation pore. The structure and its relationship to function are discussed in the light of known mutations from the homologous Escherichia coli and Salmonella typhimurium proteins.

318 citations

Journal ArticleDOI
TL;DR: It is concluded that the λ receptor facilitates the diffusion of maltose and maltodextrins through the outer membrane in wild-type and λ-resistant mutants.
Abstract: The kinetic parameters for the maltose transport system in Escherichia coli K12 were determined with maltose and maltotriose as substrates. The system exhibits an apparent Km of 1 muM for maltose and 2 muM for maltotriose. The V of entry was determined as 2.0 and 1.1 nmol substrate/min per 10(8) cells. Mutations in lamB, the structural gene for the receptor protein of phage lambda, increased the Km for maltose transport by a factor of 100-500 without influencing the maximal rate of transport. Maltotriose is no longer transported in these lamB mutants. The maltose-binding protein, an essential component of the maltose transport system, was found to exhibit substrate-dependent fluorescence quenching. This phenomenon was used to determine dissociation constants and to estimate the rate of ligand dissociation. A Kd of 1 muM for maltose and of 0.16 muM for maltotroise was found. From the comparison of the kinetic parameters of transport of maltose and maltotriose in wild-type and lambda-resistant mutants with the binding constants for both sugars to purified maltose-binding protein, we conclude that the lambda receptor facilitates the diffusion of maltose and maltodextrins through the outer membrane.

298 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: Investigation of factors that affect stability, growth, and induction of T7 expression strains in shaking vessels led to the recognition that sporadic, unintended induction of expression in complex media, previously reported by others, is almost certainly caused by small amounts of lactose.

5,395 citations

Journal ArticleDOI
TL;DR: This chapter discusses thebuilding blocks of the Transmembrane Complex, and some of the properties of these blocks have changed since the publication of the original manuscript in 1993.
Abstract: INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 DOMAIN ORGANIZATION: The Typical ABC Transporter . . . . . . . . . . . . . . . . . 73 THE TRANSMEMBRANE DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 The "Two-Times-Six" Helix Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Sequence Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 THE ATP-BINDING DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 PERIPLASMIC-BINDING PROTEINS ... . 84 SUBSTRATE SPECIFICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 THE ROLE OF ATP : Coupling Energy to Transport . . . . . . . . . . . . . . . . . . . " . . . . . 88 COVALENT MODIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 CELLULAR FUNCTIONS OF ABC TRANSPORTERS . . . . . . . . . . . . . . . . . . . . . . . 9 1 Nutrient Uptake . . . . . . . . . . . . ....... . 9 1 Protein Export ....... . .... . . . . . . . . . . . . ... . ......... . ...... . ... . .. 93 Intracellular Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Regulation of ABC Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Regulation by ABC Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Drug and Antibiotic Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Channel Functions: CFTR and P-glycoprotein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 MECHANISMS OF SOLUTE TRANSLOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Structure of the Transmembrane Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Channels and Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 I Energy Coupling andlor Gating . 102 CONCLUDING REMARKS . 103

3,937 citations

Journal ArticleDOI
TL;DR: This review summarizes the development in the field since the previous review and begins to understand how this bilayer of the outer membrane can retard the entry of lipophilic compounds, owing to increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopoly Saccharide structure is modified by environmental conditions.
Abstract: Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.

3,585 citations