scispace - formally typeset
Author

Wing-Kin Sung

Bio: Wing-Kin Sung is an academic researcher from National University of Singapore. The author has contributed to research in topic(s): Gene & Chromatin immunoprecipitation. The author has an hindex of 64, co-authored 327 publication(s) receiving 26116 citation(s). Previous affiliations of Wing-Kin Sung include University of Hong Kong & Yale University.


Papers
More filters
Journal ArticleDOI

[...]

14 Jun 2007-Nature
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Abstract: We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

4,870 citations

Journal ArticleDOI

[...]

13 Jun 2008-Cell
TL;DR: This study uses chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing to map the locations of TF-binding sites and identifies important features of the transcriptional regulatory networks that define ES-cell identity.
Abstract: Transcription factors (TFs) and their specific interactions with targets are crucial for specifying gene-expression programs. To gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we use chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of 13 sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12). These factors are known to play different roles in ES-cell biology as components of the LIF and BMP signaling pathways, self-renewal regulators, and key reprogramming factors. Our study provides insights into the integration of the signaling pathways into the ES-cell-specific transcription circuitries. Intriguingly, we find specific genomic regions extensively targeted by different TFs. Collectively, the comprehensive mapping of TF-binding sites identifies important features of the transcriptional regulatory networks that define ES-cell identity.

2,394 citations

Journal ArticleDOI

[...]

05 Nov 2009-Nature
TL;DR: It is proposed that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes and is described as a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global Chromatin interactions.
Abstract: Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally Many transcription factors bind to regulatory DNA elements distant from gene promoters Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor α (ER-α) in the human genome We found that most high-confidence remote ER-α-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-α functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes © 2009 Macmillan Publishers Limited All rights reserved

1,436 citations

Journal ArticleDOI

[...]

13 Jan 2006-Cell
TL;DR: A robust approach is described that couples chromatin immunoprecipitation (ChIP) with the paired-end ditag (PET) sequencing strategy for unbiased and precise global localization of transcription-factor binding sites (TFBS).
Abstract: The ability to derive a whole-genome map of transcription-factor binding sites (TFBS) is crucial for elucidating gene regulatory networks. Herein, we describe a robust approach that couples chromatin immunoprecipitation (ChIP) with the paired-end ditag (PET) sequencing strategy for unbiased and precise global localization of TFBS. We have applied this strategy to map p53 targets in the human genome. From a saturated sampling of over half a million PET sequences, we characterized 65,572 unique p53 ChIP DNA fragments and established overlapping PET clusters as a readout to define p53 binding loci with remarkable specificity. Based on this information, we refined the consensus p53 binding motif, identified at least 542 binding loci with high confidence, discovered 98 previously unidentified p53 target genes that were implicated in novel aspects of p53 functions, and showed their clinical relevance to p53-dependent tumorigenesis in primary cancer samples.

1,118 citations

Journal ArticleDOI

[...]

20 Jan 2012-Cell
TL;DR: In conclusion, this study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells through widespread promoter-centered intragenic, extragenics, and intergenic interactions.
Abstract: Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.

1,060 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

35,234 citations

Journal ArticleDOI

[...]

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

18,079 citations

Journal ArticleDOI

[...]

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

12,323 citations

Journal ArticleDOI

[...]

06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

11,598 citations

[...]

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations