scispace - formally typeset
Search or ask a question
Author

Wing-Kin Sung

Bio: Wing-Kin Sung is an academic researcher from National University of Singapore. The author has contributed to research in topics: Gene & Chromatin immunoprecipitation. The author has an hindex of 64, co-authored 327 publications receiving 26116 citations. Previous affiliations of Wing-Kin Sung include University of Hong Kong & Yale University.


Papers
More filters
Book ChapterDOI
25 May 2009
TL;DR: The first non-trivial lower bound is given on the period length for the oblivious case, and a period of length at most $4\frac{1}{3}n$ for oblivious agents and 3.5n for agents with constant memory is shown.
Abstract: We consider the problem of periodic graph exploration in which a mobile entity with (at most) constant memory, an agent, has to visit all n nodes of an arbitrary undirected graph G in a periodic manner. Graphs are supposed to be anonymous, that is, nodes are unlabeled. However, while visiting a node, the robot has to distinguish between edges incident to it. For each node v the endpoints of the edges incident to v are uniquely identified by different integer labels called port numbers. We are interested in the minimisation of the length of the exploration period. This problem is unsolvable if the local port numbers are set arbitrarily, see [1]. However, surprisingly small periods can be achieved when assigning carefully the local port numbers. Dobrev et al. [2] described an algorithm for assigning port numbers, and an oblivious agent (i.e., an agent with no persistent memory) using it, such that the agent explores all graphs of size n within period 10n. Providing the agent with a constant number of memory bits, the optimal length of the period was proved in [3] to be no more than 3.75n (using a different assignment of the port numbers). In this paper, we improve both these bounds. More precisely, we show a period of length at most $4\frac{1}{3}n$ for oblivious agents, and a period of length at most 3.5n for agents with constant memory. Finally, we give the first non-trivial lower bound, 2.8n, on the period length for the oblivious case.

10 citations

Book ChapterDOI
12 Dec 2007
TL;DR: A compressed version of the dynamic trie data structure is proposed which is not only space efficient, but also allows pattern searching in o(|P|) time and leaf insertion/ deletion in O(log n) time, where |P| is the length of the pattern and n is the size of the trie.
Abstract: The dynamic trie is a fundamental data structure which finds applications in many areas. This paper proposes a compressed version of the dynamic trie data structure. Our data-structure is not only space efficient, it also allows pattern searching in o(|P|) time and leaf insertion/ deletion in o(log n) time, where |P| is the length of the pattern and n is the size of the trie. To demonstrate the usefulness of the new data structure, we apply it to the LZ-compression problem. For a string S of length s over an alphabet A of size σ, the previously best known algorithms for computing the Ziv-Lempel encoding (lz78) of S either run in: (1) O(s) time and O(s log s) bits working space; or (2) O(sσ) time and O(sHk + s log σ/ logσ s) bits working space, where Hk is the k- order entropy of the text. No previous algorithm runs in sublinear time. Our new data structure implies a LZ-compression algorithm which runs in sublinear time and uses optimal working space. More precisely, the LZ-compression algorithm uses O(s(log σ +log logσ s)/ logσ s) bits working space and runs in O(s(log log s)2/(logσ s log log log s)) worst-case time, which is sublinear when σ = 2o(log slog log log s/(log log s)2).

9 citations

Proceedings ArticleDOI
06 Sep 2011
TL;DR: A method of data preprocessing and two different association rule mining approaches for discovering breast cancer regulatory mechanisms of gene module are developed.
Abstract: To gain insight into regulatory mechanisms underlying the transcription process of gene expressions, we need to understand the co-expressed gene sets under common regulatory mechanisms. Though computational methods have been developing to identify expression module, challenges still remain for cancer related gene expression profiling. In this paper, we have developed a method of data preprocessing and two different association rule mining approaches for discovering breast cancer regulatory mechanisms of gene module. Our data preprocessing task involved with two independent data sources: (a) a single breast cancer patient profile data file, (b) a candidate enhancer information data file. Using the integrated data, we also conducted four experiments of the association rule mining.

9 citations

Book ChapterDOI
07 Apr 2013
TL;DR: A deterministic algorithm for building the majority rule consensus tree of an input collection of conflicting phylogenetic trees with identical leaf labels is presented and it is shown that the algorithm is fast in practice.
Abstract: A deterministic algorithm for building the majority rule consensus tree of an input collection of conflicting phylogenetic trees with identical leaf labels is presented. Its worst-case running time is O(nk), where n is the size of the leaf label set and k is the number of input phylogenetic trees. This is optimal since the input size is Ω(nk). Experimental results show that the algorithm is fast in practice.

9 citations

Proceedings ArticleDOI
01 Oct 2005
TL;DR: The experimental results clearly show that the proposed fusion schemes give a significant improvement in term of the mean of F1 as well as the number of the detected concepts.
Abstract: In this paper, two discriminative fusion schemes are proposed for automatic image annotation One is the ensemble-pattern association based fusion and another is the model-based transformation The fusion approaches are studied and evaluated in a unified framework for AIA based on the text representation of the image content and the MC MFoM learning The schemes are flexible for fusing diverse visual features and multiple modalities The discriminative learning can automatically weight the most important features for the classification We evaluate the fusion schemes based on the Corel and TRECVID 2003 datasets The experimental results clearly show that the proposed fusion schemes give a significant improvement in term of the mean of F1 as well as the number of the detected concepts

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Abstract: We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.

13,008 citations