scispace - formally typeset
Search or ask a question
Author

Wing Tat Leung

Bio: Wing Tat Leung is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Basis function & Finite element method. The author has an hindex of 17, co-authored 86 publications receiving 1172 citations. Previous affiliations of Wing Tat Leung include Lanzhou University & The Chinese University of Hong Kong.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a constraint energy minimization to construct multiscale spaces for GMsFEM, which is performed in the oversampling domain, which can handle non-decaying components of the local minimizers.

151 citations

Journal ArticleDOI
TL;DR: An error estimator is derived which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error, independent of physical parameters, such as the contrast and multiple scales in the problem.

118 citations

Journal ArticleDOI
TL;DR: Efendiev et al. as discussed by the authors proposed a multiscale finite element method for wave propagation on a coarse grid, which is based on the generalized multi-scale finite element (GMsFEM).
Abstract: Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to their complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the generalized multiscale finite element method (GMsFEM) (see [Y. Efendiev, J. Galvis, and T. Hou, J. Comput. Phys., 251 (2012), pp. 116--135]). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block, where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To the best of kn...

109 citations

Journal ArticleDOI
TL;DR: A rigorous and accurate non-local (in the oversampled region) upscaling framework based on some recently developed multiscale methods is proposed based on Generalized Multiscale Finite Element Method (GMsFEM) and can provide good accuracy.

105 citations

Posted Content
TL;DR: In this article, a multiscale finite element method for wave propagation on a coarse grid is proposed, which is based on the Generalized Multiscale Finite Element Method (GMsFEM).
Abstract: Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to the complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the Generalized Multiscale Finite Element Method (GMsFEM). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To our best knowledge, this is the first time where multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix, and, consequently, results in fast computations in an explicit time discretiza- tion. Our methods' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods' accuracy.

74 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal Article
TL;DR: The methodology proposed automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density, and substantial improvements in the time‐normalized effective sample size are reported when compared with alternative sampling approaches.
Abstract: The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis-Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This allows for highly efficient sampling even in very high dimensions where different scalings may be required for the transient and stationary phases of the Markov chain. The methodology proposed exploits the Riemann geometry of the parameter space of statistical models and thus automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density. The performance of these Riemann manifold Monte Carlo methods is rigorously assessed by performing inference on logistic regression models, log-Gaussian Cox point processes, stochastic volatility models and Bayesian estimation of dynamic systems described by non-linear differential equations. Substantial improvements in the time-normalized effective sample size are reported when compared with alternative sampling approaches. MATLAB code that is available from http://www.ucl.ac.uk/statistics/research/rmhmc allows replication of all the results reported.

1,031 citations

Journal Article
TL;DR: Gegenstand des Buches ist die Dual Weighted Residual method (DWR), ein sehr effizientes numerisches Verfahren zur Behandlung einer großen Klasse of variationell formulierten Differentialgleichungen, und das Buch gibt einen sehr guten Überblick über die Technik and the Möglichkeiten der DWR.
Abstract: Gegenstand des Buches ist die Dual Weighted Residual method (DWR), ein sehr effizientes numerisches Verfahren zur Behandlung einer großen Klasse von variationell formulierten Differentialgleichungen. Das numerische Verfahren ist adaptiv, d.h. es konstruiert eigenständig eine Folge von Approximationen für eine gegebene Fragestellung. Typische Fragestellungen sind die Bestimmung gewichteter Mittelwerte der Lösung oder ihrer Ableitungen, die Bestimmung von Randintegralen über Lösungskomponenten (relevant z.B. für die Berechnung von strömungsmechanischen Kenngrößen) oder die Bestimmung von Spannungsintensitätsfaktoren (z.B. in der Bruchmechanik). Das Verfahren basiert auf Projektionsmethoden wie z.B. der Finiten Elemente Methode (FEM). Dort wird die Approximationsgüte durch die Wahl der Gitter gesteuert. Der Kern jeder adaptiven FEM ist deshalb die Art, wie die Gitter gewählt werden. Typischerweise geschieht dies in einer adaptiven Schleife, in der in mehreren Durchgängen schrittweise das Gitter verbessert wird, bis eine gewünschte Genauigkeit erreicht ist. Bei der DWR wird in jedem Schleifendurchgang ein lineares Hilfsproblem—das sog. duale Problem, welches von der vorliegenden Fragestellung abhängt—(näherungsweise) gelöst. Weiterhin wird eine Approximation der Differentialgleichung bestimmt. Aus diesen nun vorliegenden Daten wird dann herausdestilliert, wo das Gitter verfeinert werden sollte bzw. vergröbert werden kann, um eine genauere Lösung zu erhalten. Ziel eines adaptiven Algorithmus ist, das gewünschte Ergebnis möglichst effizient zu bestimmen, d.h. mit möglichst geringem Bedarf an Resourcen (Rechenzeit, Speicherbedarf etc.). Mit zahlreichen Beispielen belegt das Buch, daß die DWR dieses Ziel erreicht. Es sei hier besonders hervorgehoben, daß eine Kosten-Nutzen-Betrachtung für die DWR besonders bei nichtlinearen Problemen günstig ausfällt, da die Kosten für die Lösung des linearen Hilfsproblems vergleichbar mit denen eines Newtonschrittes sind und somit nur einen kleinen Teil der Gesamtkosten ausmachen. Das Buch gibt einen sehr guten Überblick über die Technik und die Möglichkeiten der DWR. In einleitenden Kapiteln wird die DWR an gewöhnlichen Differentialgleichungen und dann an einfachen linearen, elliptischen partiellen Differentialgleichungen sehr klar und verständlich vorgeführt. Anschließend wird die DWR in einem abstrakten funktionalanalytischen Rahmen vorgestellt. Der Rest des Buches illustriert auf eindrucksvolle Weise die Leistungsfähigkeit und Breite der Anwendungsfähigkeit des Konzeptes an Hand von Fallbeispielen: Es werden Eigenwertprobleme, Optimierungsaufgaben mit Zwangsbedingungen, die durch eine partielle Differentialgleichung gegeben sind, Strukturmechanikprobleme (lineare Elastizität, Plastizität), Strömungsmechanik (hydrodynamische Stabilitätsanalyse, Berechnung von Strömungskennwerten) behandelt. Auch zeitabhängige Probleme wie die Lösung der Wellengleichung werden mit der DWR erfolgreich bearbeitet. Insgesamt wird klar ersichtlich, daß die DWR eine sehr flexible und vielseitig anwendbare Technik ist. Die ausgewählten numerischen Beispiele, die vor allem aus umfangreichen numerischen Untersuchungen der Gruppe von Rolf Rannacher aus den letzten 10 Jahren ausgewählt wurden, sind sehr illustrativ. Die Erläuterungen zu den Beispielen sind auch deshalb interessant, weil eine Menge zusätzlicher Informationen über die numerische Behandlung des vorliegenden Problems quasi nebenbei einfließen. Das Buch entstand aus einer fortgeschrittenen Spezialvorlesung, die an der ETH Zürich gehalten wurde. Einen Lehrbuchcharakter erhält das Buch dadurch, daß Übungsaufgaben (mit detailierten Lösungen im Anhang) jedes Kapitel abschließen. Die Aufgaben enthal-

413 citations

01 Jan 2001
TL;DR: This work constructs a simple and efficient adaptive FEM for elliptic partial differential equations and proves that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants.
Abstract: Adaptive finite element methods (FEM) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well. Keywords: A posteriori error estimators, data oscillation, adaptive mesh refinement, convergence, Stokes, Uzawa AMS Subject Classifications: 65N12, 65N15, 65N30, 65N50, 65Y20 Published: SIAM Review, 44 (2002) 631--658.

337 citations

Journal ArticleDOI
TL;DR: A general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method is presented, which allows performing local model reduction in the presence of high contrast and no scale separation.

199 citations