scispace - formally typeset
Search or ask a question
Author

Wisama Khalil

Bio: Wisama Khalil is an academic researcher from École centrale de Nantes. The author has contributed to research in topics: Robot & Parallel manipulator. The author has an hindex of 35, co-authored 115 publications receiving 5937 citations. Previous affiliations of Wisama Khalil include Centre national de la recherche scientifique & Institut de Recherche en Communications et Cybernétique de Nantes.


Papers
More filters
Proceedings ArticleDOI
07 Apr 1986
TL;DR: A new geometric notation for the description of the kinematic of open-loop, tree and closed-loop structure robots is presented, derived from the well-known Denavit and Hartenberg (D-H) notation.
Abstract: This paper presents a new geometric notation for the description of the kinematic of open-loop, tree and closed-loop structure robots. The method is derived from the well-known Denavit and Hartenberg (D-H) notation, which is powerful for serial robots but leads to ambiguities in the case of tree and closed-loop structure robots. The given method has all the advantages of D-H notation in the case of open-loop robots.

400 citations

Journal ArticleDOI
01 Jun 1990
TL;DR: A direct method is presented for determining the minimum set of inertial parameters of serial robots and permits determination of most of the regrouped parameters by means of closed-form relations.
Abstract: The determination of the minimum set of inertial parameters of robots contributes to the reduction of the computational cost of the dynamic models and simplifies the identification of the inertial parameters. These parameters can be obtained from the classical inertial parameters by eliminating those that have no effect on the dynamic model and by regrouping some others. A direct method is presented for determining the minimum set of inertial parameters of serial robots. The method permits determination of most of the regrouped parameters by means of closed-form relations. >

327 citations

Journal ArticleDOI
TL;DR: In this article, a method to generate exciting identification trajectories in order to minimize the effect of noise and error modeling on the standard least-squares (LS) solution is presented.
Abstract: A common way to identify the inertial parameters of robots is to use a linear model in relation to the parameters and standard least-squares (LS) techniques. This article presents a method to generate exciting identification trajectories in order to minimize the effect of noise and error modeling on the LS solution. Using nonlinear optimization techniques, the condition number of a matrix W obtained from the energy model is minimized, and the scaling of its terms is carried out. An example of a three-degree-of-freedom robot is presented.

273 citations


Cited by
More filters
MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the capabilities of soft robots, describe examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.
Abstract: Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

1,295 citations

Book
26 Nov 2007
TL;DR: Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation to facilitate the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.
Abstract: Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-bodydynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.

1,057 citations

Book
26 Jun 2007
TL;DR: In this article, the authors present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots, including modeling walking and running gaits in planar robots.
Abstract: Bipedal locomotion is among the most difficult challenges in control engineering. Most books treat the subject from a quasi-static perspective, overlooking the hybrid nature of bipedal mechanics. Feedback Control of Dynamic Bipedal Robot Locomotion is the first book to present a comprehensive and mathematically sound treatment of feedback design for achieving stable, agile, and efficient locomotion in bipedal robots.In this unique and groundbreaking treatise, expert authors lead you systematically through every step of the process, including:Mathematical modeling of walking and running gaits in planar robotsAnalysis of periodic orbits in hybrid systemsDesign and analysis of feedback systems for achieving stable periodic motionsAlgorithms for synthesizing feedback controllersDetailed simulation examplesExperimental implementations on two bipedal test bedsThe elegance of the authors' approach is evident in the marriage of control theory and mechanics, uniting control-based presentation and mathematical custom with a mechanics-based approach to the problem and computational rendering. Concrete examples and numerous illustrations complement and clarify the mathematical discussion. A supporting Web site offers links to videos of several experiments along with MATLAB® code for several of the models. This one-of-a-kind book builds a solid understanding of the theoretical and practical aspects of truly dynamic locomotion in planar bipedal robots.

988 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the fundamentals of numerical error compensation and the available methods for measuring the geometrical errors of a machine and discuss the uncertainties involved in different mapping methods and their application characteristics.
Abstract: For measuring machines and machine tools, geometrical accuracy is a key performance criterion. While numerical compensation is well established for CMMs, it is increasingly used on machine tools in addition to mechanical accuracy. This paper is an update on the CIRP keynote paper by Sartori and Zhang from 1995 [Sartori S, Zhang GX (1995) Geometric error measurement and compensation of machines, Annals of the CIRP 44(2):599–609]. Since then, numerical error compensation has gained immense importance for precision machining. This paper reviews the fundamentals of numerical error compensation and the available methods for measuring the geometrical errors of a machine. It discusses the uncertainties involved in different mapping methods and their application characteristics. Furthermore, the challenges for the use of numerical compensation for manufacturing machines are specified. Based on technology and market development, this work aims at giving a perspective for the role of numerical compensation in the future.

833 citations