scispace - formally typeset
Search or ask a question
Author

Wmm Erwin Kessels

Bio: Wmm Erwin Kessels is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Atomic layer deposition & Thin film. The author has an hindex of 58, co-authored 227 publications receiving 12990 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art surface passivation of c-Si solar cells is achieved by Al2O3 films prepared by plasma-assisted atomic layer deposition, yielding effective surface recombination velocities of 2 and 13cm∕s on low resistivity n- and p-type cSi, respectively as mentioned in this paper.
Abstract: Excellent surface passivation of c-Si has been achieved by Al2O3 films prepared by plasma-assisted atomic layer deposition, yielding effective surface recombination velocities of 2 and 13cm∕s on low resistivity n- and p-type c-Si, respectively. These results obtained for ∼30nm thick Al2O3 films are comparable to state-of-the-art results when employing thermal oxide as used in record-efficiency c-Si solar cells. A 7nm thin Al2O3 film still yields an effective surface recombination velocity of 5cm∕s on n-type silicon.

697 citations

Journal ArticleDOI
TL;DR: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process.
Abstract: Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processing conditions and for a wider range of material properties compared with the conventional thermally-driven ALD method. Due to the continuous miniaturization in the microelectronics industry and the increasing relevance of ultra-thin films in many other applications, the deposition method has rapidly gained popularity in recent years, as is apparent from the increased number of articles published on the topic and plasma-assisted ALD reactors installed. To address the main differences between plasma-assisted ALD and thermal ALD, some basic aspects related to processing plasmas are presented in this review article. The plasma species and their role in the surface chemistry are addressed and different equipment configurations, including radical-enhanced ALD, direct plasma ALD, and remote plasma ALD, are described. The benefits and challenges provided by the use of a plasma step are presented and it is shown that the use of a plasma leads to a wider choice in material properties, substrate temperature, choice of precursors, and processing conditions, but that the processing can also be compromised by reduced film conformality and plasma damage. Finally, several reported emerging applications of plasma-assisted ALD are reviewed. It is expected that the merits offered by plasma-assisted ALD will further increase the interest of equipment manufacturers for developing industrial-scale deposition configurations such that the method will find its use in several manufacturing applications.

690 citations

Journal ArticleDOI
TL;DR: In this paper, aluminum oxide (Al2O3) nanolayers synthesized by atomic layer deposition (ALD) have been used for the passivation of p-and n-type crystalline Si (c-Si) surfaces.
Abstract: The reduction in electronic recombination losses by the passivation of silicon surfaces is a critical enabler for high-efficiency solar cells. In 2006, aluminum oxide (Al2O3) nanolayers synthesized by atomic layer deposition (ALD) emerged as a novel solution for the passivation of p- and n-type crystalline Si (c-Si) surfaces. Today, high efficiencies have been realized by the implementation of ultrathin Al2O3 films in laboratory-type and industrial solar cells. This article reviews and summarizes recent work concerning Al2O3 thin films in the context of Si photovoltaics. Topics range from fundamental aspects related to material, interface, and passivation properties to synthesis methods and the implementation of the films in solar cells. Al2O3 uniquely features a combination of field-effect passivation by negative fixed charges, a low interface defect density, an adequate stability during processing, and the ability to use ultrathin films down to a few nanometers in thickness. Although various methods can be used to synthesize Al2O3, this review focuses on ALD—a new technology in the field of c-Si photovoltaics. The authors discuss how the unique features of ALD can be exploited for interface engineering and tailoring the properties of nanolayer surface passivation schemes while also addressing its compatibility with high-throughput manufacturing. The recent progress achieved in the field of surface passivation allows for higher efficiencies of industrial solar cells, which is critical for realizing lower-cost solar electricity in the near future.

684 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the surface passivation of Al2O3 can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density.
Abstract: Al2O3 is a versatile high-κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Qf of up to 1013 cm−2 present in the Al2O3 film at the interface with the underlying Si substrate. The negative polarity of Qf in Al2O3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Qf2, the high Qf in Al2O3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes.

518 citations

Journal ArticleDOI
TL;DR: In this article, the level of surface passivation in thin Al2O3 films was determined by techniques based on photoconductance, photoluminescence, and infrared emission.
Abstract: Thin Al2O3 films with a thickness of 7–30 nm synthesized by plasma-assisted atomic layer deposition (ALD) were used for surface passivation of crystalline silicon (c-Si) of different doping concentrations. The level of surface passivation in this study was determined by techniques based on photoconductance, photoluminescence, and infrared emission. Effective surface recombination velocities of 2 and 6 cm/s were obtained on 1.9 Ω cm n-type and 2.0 Ω cm p-type c-Si, respectively. An effective surface recombination velocity below 1 cm/s was unambiguously obtained for nearly intrinsic c-Si passivated by Al2O3. A high density of negative fixed charges was detected in the Al2O3 films and its impact on the level of surface passivation was demonstrated experimentally. The negative fixed charge density results in a flat injection level dependence of the effective lifetime on p-type c-Si and explains the excellent passivation of highly B-doped c-Si by Al2O3. Furthermore, a brief comparison is presented between the ...

449 citations


Cited by
More filters
Journal ArticleDOI

4,756 citations

Journal ArticleDOI
TL;DR: In this paper, a silicon heterojunction with interdigitated back contacts was presented, achieving an efficiency of 26.3% and a detailed loss analysis to guide further developments.
Abstract: The efficiency of silicon solar cells has a large influence on the cost of most photovoltaics panels. Here, researchers from Kaneka present a silicon heterojunction with interdigitated back contacts reaching an efficiency of 26.3% and provide a detailed loss analysis to guide further developments.

2,052 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal Article
TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Abstract: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

1,479 citations