scispace - formally typeset
Search or ask a question
Author

Wojciech Kostowski

Bio: Wojciech Kostowski is an academic researcher from Medical University of Warsaw. The author has contributed to research in topics: Agonist & Desipramine. The author has an hindex of 40, co-authored 168 publications receiving 4876 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data from the present study do not lend support to the idea that low affinity, open channel NMDA receptor blockers are also effective in models of epilepsy at doses having little effect on physiological processes and do not contradict the known therapeutic safety of memantine and amantadine in dementia and Parkinson's disease respectively.

312 citations

Journal Article
TL;DR: A series of tricyclic pyrido-phthalazine-dione derivatives were tested for antagonistic effects at the strychnine-insensitive modulatory site of the N-methyl-D-aspartate (NMDA) receptor (glycineB) as discussed by the authors.
Abstract: A series of novel tricyclic pyrido-phthalazine-dione derivatives was tested for antagonistic effects at the strychnine-insensitive modulatory site of the N-methyl-D-aspartate (NMDA) receptor (glycineB). All compounds displaced [3H]MDL-105,519 binding to rat cortical membranes with IC50 values of between 90 nM and 3.6 microM. In patch-clamp experiments, steady-state inward current responses of cultured hippocampal neurons to NMDA (200 microM, glycine 1 microM) were antagonized by these same compounds with IC50 values of 0.14 to 13.8 microM. The antagonism observed was typical for glycineB antagonists, i.e., they induced desensitization and their effects were not use or voltage dependent. Moreover, increasing concentrations of glycine were able to decrease their apparent potency. Much higher concentrations (>100 microM) were required to antagonize alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced currents. They were potent, systemically active NMDA receptor antagonists in vivo against responses of single neurons in the rat spinal cord to microelectrophoretic application of NMDA with ID50 values in the low milligram per kilogram i.v. range. They also inhibited pentylenetetrazol-, NMDA- and maximal electroshock-induced convulsions in mice with ED50 values ranging from 8 to 100 mg/kg i.p. The duration of anticonvulsive action was rather short but was prolonged by the organic acid transport inhibitor probenecid (200 mg/kg). The agents tested represent a novel class of systemically active glycineB antagonists with greatly improved bioavailability.

197 citations

Journal ArticleDOI
TL;DR: The results indicate an anti-emotional influence of local stimulation of 5-HT1A receptors by buspirone.

128 citations

Journal ArticleDOI
TL;DR: In humans ethanol tastes both bitter and sweet, suggesting that the relationship between sucrose and ethanol intakes previously found in animals and humans may result, at least partially, from similar taste responses elicited by suc rose and ethanol.

116 citations

Journal ArticleDOI
TL;DR: The present data indicate similar but not identical spectra of pharmacological sensitivity of both ethologically-oriented and conflict tests, for various classes of anxiolytic drugs, as shown in the Vogel's and the open-field tests.

105 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.

4,160 citations

Journal Article
TL;DR: The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992, stimulated the development of ionotropic glutamate receptors in the brain.
Abstract: The ionotropic glutamate receptors are ligand-gated ion channels that mediate the vast majority of excitatory neurotransmission in the brain. The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992 ([Hollmann and Heinemann, 1994][1]), stimulated this

4,112 citations

Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations

Journal ArticleDOI
TL;DR: Compounds that have a different spectrum of therapeutic efficacy in anxiety disorders such as panic attacks, generalized anxiety disorder or obsessive-compulsive disorder were poorly effective as anxiolytics in the open field test, suggesting that this paradigm may not model features of anxiety disorders.

2,665 citations

Journal ArticleDOI
TL;DR: Dopamine’s contribution appears to be chiefly to cause ‘wanting’ for hedonic rewards, more than ‘liking’ or learning for those rewards.
Abstract: Introduction Debate continues over the precise causal contribution made by mesolimbic dopamine systems to reward. There are three competing explanatory categories: ‘liking’, learning, and ‘wanting’. Does dopamine mostly mediate the hedonic impact of reward (‘liking’)? Does it instead mediate learned predictions of future reward, prediction error teaching signals and stamp in associative links (learning)? Or does dopamine motivate the pursuit of rewards by attributing incentive salience to reward-related stimuli (‘wanting’)? Each hypothesis is evaluated here, and it is suggested that the incentive salience or ‘wanting’ hypothesis of dopamine function may be consistent with more evidence than either learning or ‘liking’. In brief, recent evidence indicates that dopamine is neither necessary nor sufficient to mediate changes in hedonic ‘liking’ for sensory pleasures. Other recent evidence indicates that dopamine is not needed for new learning, and not sufficient to directly mediate learning by causing teaching or prediction signals. By contrast, growing evidence indicates that dopamine does contribute causally to incentive salience. Dopamine appears necessary for normal ‘wanting’, and dopamine activation can be sufficient to enhance cue-triggered incentive salience. Drugs of abuse that promote dopamine signals short circuit and sensitize dynamic mesolimbic mechanisms that evolved to attribute incentive salience to rewards. Such drugs interact with incentive salience integrations of Pavlovian associative information with physiological state signals. That interaction sets the stage to cause compulsive ‘wanting’ in addiction, but also provides opportunities for experiments to disentangle ‘wanting’, ‘liking’, and learning hypotheses. Results from studies that exploited those opportunities are described here.

2,161 citations