scispace - formally typeset
Search or ask a question
Author

Wolf B. Kratzert

Bio: Wolf B. Kratzert is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Intensive care unit & Perioperative. The author has an hindex of 4, co-authored 10 publications receiving 62 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Advances in understanding the physiology of extravascular lung water accumulation in health and in disease and the various mechanisms that protect against the development of pulmonary edema under physiologic conditions are discussed.

63 citations

Journal ArticleDOI
TL;DR: The effects of chronic comorbidities on the management of critically ill adults are explored, and the adjustments of current ICU management modalities and pharmacology to optimize care are discussed.

9 citations

Journal ArticleDOI
TL;DR: It is suggested that postoperative changes in myocardial function are heterogeneous in nature, depending on the surgical procedure, and that these changes may have long-term impacts on outcome, and 3D regional strain may be used to identify patients at risk for worsened postoperative outcomes.
Abstract: Background Three-dimensional (3D) strain is an echocardiographic modality that can characterize left ventricular (LV) function with greater accuracy than ejection fraction. While decreases in global strain have been used to predict outcomes after cardiac surgery, changes in regional 3D longitudinal, circumferential, radial, and area strain have not been well described. The primary aim of this study was to define differential patterns in regional LV dysfunction after cardiac surgery using 3D speckle tracking strain imaging. Our secondary aim was to investigate whether changes in regional strain can predict postoperative outcomes, including length of intensive care unit stay and 1-year event-free survival. Methods In this prospective clinical study, demographic, operative, echocardiographic, and clinical outcome data were collected on 182 patients undergoing aortic valve replacement, mitral valve repair or replacement, coronary artery bypass graft, and combined cardiac surgery. Three-dimensional transthoracic echocardiograms were performed preoperatively and on the second to fourth postoperative day. Blinded analysis was performed for LV regional longitudinal, circumferential, radial, and area strain in the 17-segment model. Results Regional 3D longitudinal, circumferential, radial, and area strains were associated with differential patterns of myocardial dysfunction, depending on the surgical procedure performed and strain measure. Patients undergoing mitral valve repair or replacement had reduced function in the majority of myocardial segments, followed by coronary artery bypass graft, while patients undergoing aortic valve replacement had reduced function localized only to apical segments. After all types of cardiac surgery, segmental function in apical segments was reduced to a greater extent as compared to basal segments. Greater decrements in regional function were seen in circumferential and area strain, while smaller decrements were observed in longitudinal strain in all surgical patients. Both preoperative regional strain and change in regional strain preoperatively to postoperatively were correlated with reduced 1-year event-free survival, while postoperative strain was not predictive of outcomes. Only preoperative strain values were predictive of intensive care unit length of stay. Conclusions Changes in regional myocardial function, measured by 3D strain, varied by surgical procedure and strain type. Differences in regional LV function, from presurgery to postsurgery, were associated with worsened 1-year event-free survival. These findings suggest that postoperative changes in myocardial function are heterogeneous in nature, depending on the surgical procedure, and that these changes may have long-term impacts on outcome. Therefore, 3D regional strain may be used to identify patients at risk for worsened postoperative outcomes, allowing early interventions to mitigate risk.

8 citations

Journal ArticleDOI
TL;DR: Monitoring EVLW in the perioperative period offers clinicians a powerful tool to guide fluid therapy and manage pulmonary edema.
Abstract: Purpose of review Excessive accumulation of extravascular lung water (EVLW) resulting in pulmonary edema is the most feared complication following thoracic surgery and lung transplant. ICUs have long relied on chest radiography to monitor pulmonary status postoperatively but the increasing recognition of the limitations of bedside plain films has fueled development of newer technologies, which offer earlier detection, quantitative assessments, and can aide in preoperative screening of surgical candidates. In this review, we focus on the emergence of transpulmonary thermodilution (TPTD) and lung ultrasound with a focus on the clinical integration of these modalities into current intraoperative and critical care practices. Recent findings Recent studies demonstrate transpulmonary thermodilution and lung ultrasound provide greater sensitivity and earlier detection of lung water accumulation and are useful to guide clinical management. Assessments from these techniques have predictive value of postoperative outcome. Further, EVLW assessment shows promise as a preoperative screening tool in lung transplant patients. Summary Monitoring EVLW in the perioperative period offers clinicians a powerful tool to guide fluid therapy and manage pulmonary edema. Both TPTD and lung ultrasound have unique attributes in the care of thoracic surgery and lung transplant patients.

8 citations

Journal ArticleDOI
TL;DR: A comprehensive update on failing Fontan physiology and the role of heart and combined heart and liver transplantation in the current era is provided in this article, where the authors describe the challenges and opportunities of transplanting Fontan patients, as viewed and managed by the experienced team at the Ahmanson/UCLA Adult Congenital Heart Center.
Abstract: This is a comprehensive update on failing Fontan physiology and the role of heart and combined heart and liver transplantation in the current era. Single ventricle physiology encompasses a series of rare congenital cardiac abnormalities that are characterized by absence of or hypoplasia of one ventricle. This effectively results in a single ventricular pumping chamber. These abnormalities are rarely compatible with long-term survival if left without surgical palliation in the first few years of life. Surgical treatment of single ventricle physiology has evolved over the past 60 years and is characterized by numerous creative innovations. These include the development of arteriopulmonary shunts, the evolution of partial cavopulmonary connections, and the eventual development of the “Fontan” operation. Regardless of the type of Fontan modification, the long-term consequences of the Fontan operation are predominantly related to chronic central venous hypertension and the multi-organ consequences thereof. Atrial arrhythmias can further compromise this circulation.Patients with single ventricle physiology represent a special sub-segment of congenital cardiac transplants and are arguably the most challenging patients considered for transplantation. This review describes in detail the challenges and opportunities of heart and liver transplantation in Fontan patients, as viewed and managed by the experienced team at the Ahmanson/UCLA Adult Congenital Heart Center.

8 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2019
TL;DR: Lung ultrasonography was found to be more sensitive than chest radiography for the detection of cardiogenic pulmonary edema and had comparable specificity, and appeared to be useful as an adjunct imaging study in patients presenting with dyspnea at risk for heart failure.
Abstract: Importance Standard tools used to diagnose pulmonary edema in acute decompensated heart failure (ADHF), including chest radiography (CXR), lack adequate sensitivity, which may delay appropriate diagnosis and treatment. Point-of-care lung ultrasonography (LUS) may be more accurate than CXR, but no meta-analysis of studies directly comparing the 2 tools was previously available. Objective To compare the accuracy of LUS with the accuracy of CXR in the diagnosis of cardiogenic pulmonary edema in adult patients presenting with dyspnea. Data Sources A comprehensive search of MEDLINE, Embase, and Cochrane Library databases and the gray literature was performed in May 2018. No language or year limits were applied. Study Selection Study inclusion criteria were a prospective adult cohort of patients presenting to any clinical setting with dyspnea who underwent both LUS and CXR on initial assessment with imaging results compared with a reference standard ADHF diagnosis by a clinical expert after either a medical record review or a combination of echocardiography findings and brain-type natriuretic peptide criteria. Two reviewers independently assessed the studies for inclusion criteria, and disagreements were resolved with discussion. Data Extraction and Synthesis Reporting adhered to the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy and the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Two authors independently extracted data and assessed the risk of bias using a customized QUADAS-2 tool. The pooled sensitivity and specificity of LUS and CXR were determined using a hierarchical summary receiver operating characteristic approach. Main Outcomes and Measures The comparative accuracy of LUS and CXR in diagnosing ADHF as measured by the differences between the 2 modalities in pooled sensitivity and specificity. Results The literature search yielded 1377 nonduplicate titles that were screened, of which 43 articles (3.1%) underwent full-text review. Six studies met the inclusion criteria, representing a total of 1827 patients. Pooled estimates for LUS were 0.88 (95% Cl, 0.75-0.95) for sensitivity and 0.90 (95% Cl, 0.88-0.92) for specificity. Pooled estimates for CXR were 0.73 (95% CI, 0.70-0.76) for sensitivity and 0.90 (95% CI, 0.75-0.97) for specificity. The relative sensitivity ratio of LUS, compared with CXR, was 1.2 (95% CI, 1.08-1.34;P Conclusions and Relevance The findings suggest that LUS is more sensitive than CXR in detecting pulmonary edema in ADHF; LUS should be considered as an adjunct imaging modality in the evaluation of patients with dyspnea at risk of ADHF.

155 citations

Journal ArticleDOI
TL;DR: In this article, an increase in pulmonary vascular permeability accompanied with accumulation of excess extravascular lung water (EVLW) is the hallmark of acute respiratory distress syndrome (ARDS).
Abstract: Purpose of review Increase in pulmonary vascular permeability accompanied with accumulation of excess extravascular lung water (EVLW) is the hallmark of acute respiratory distress syndrome (ARDS). Currently, EVLW and pulmonary vascular permeability index (PVPI) can be quantitatively measured using the transpulmonary thermodilution (TPTD) technique. We will clarify why, how, and when EVLW and PVPI measurements should be performed.

40 citations

Journal ArticleDOI
TL;DR: In hypothermic patients, the chances of survival and good neurological outcome are higher than for normothermic Patients for witnessed, unwitnessed and asystolic cardiac arrest.
Abstract: Accidental hypothermia is an unintentional drop of core temperature below 35 °C. Annually, thousands die of primary hypothermia and an unknown number die of secondary hypothermia worldwide. Hypothermia can be expected in emergency patients in the prehospital phase. Injured and intoxicated patients cool quickly even in subtropical regions. Preventive measures are important to avoid hypothermia or cooling in ill or injured patients. Diagnosis and assessment of the risk of cardiac arrest are based on clinical signs and core temperature measurement when available. Hypothermic patients with risk factors for imminent cardiac arrest (temperature < 30 °C in young and healthy patients and <32 °C in elderly persons, or patients with multiple comorbidities), ventricular dysrhythmias, or systolic blood pressure < 90 mmHg) and hypothermic patients who are already in cardiac arrest, should be transferred directly to an extracorporeal life support (ECLS) centre. If a hypothermic patient arrests, continuous cardiopulmonary resuscitation (CPR) should be performed. In hypothermic patients, the chances of survival and good neurological outcome are higher than for normothermic patients for witnessed, unwitnessed and asystolic cardiac arrest. Mechanical CPR devices should be used for prolonged rescue, if available. In severely hypothermic patients in cardiac arrest, if continuous or mechanical CPR is not possible, intermittent CPR should be used. Rewarming can be accomplished by passive and active techniques. Most often, passive and active external techniques are used. Only in patients with refractory hypothermia or cardiac arrest are internal rewarming techniques required. ECLS rewarming should be performed with extracorporeal membrane oxygenation (ECMO). A post-resuscitation care bundle should complement treatment.

33 citations

Journal ArticleDOI
TL;DR: This study aimed to investigate whether the B‐line score (BLS) was correlated with the EVLW content determined by the lung wet/dry ratio in a rabbit model.
Abstract: Background Increases in extravascular lung water (EVLW) can lead to respiratory failure. This study aimed to investigate whether the B-line score (BLS) was correlated with the EVLW content determined by the lung wet/dry ratio in a rabbit model. Methods A total of 45 New Zealand rabbits were randomly assigned to nine groups. Among the animals, models of various lung water content levels were induced by the infusion of different volumes of warm sterile normal saline (NS) via the endotracheal tube. The arterial blood gas, spontaneous respiratory rate, and PaO2 /FiO2 ratio were detected before and after infusion. In addition, the B-lines were determined before and immediately after infusion in each group. Finally, both lungs were resected to determine the wet/dry ratio. In addition, all lung specimens were analyzed histologically, and EVLW was quantified using the BLS based on the number and confluence of B-lines in the intercostal space. Results The BLS increased with increasing infusion volume. The BLS was statistically correlated with the wet/dry ratio (r2 = .946) and with the PaO2 /FiO2 ratio (r2 = .916). Furthermore, a repeatability study was performed for the lung ultrasound (LUS) technology (Bland-Altman plots), and the results suggest that LUS had favorable intraobserver and interobserver reproducibility. Conclusions This study is the first to suggest that the BLS can serve as a sensitive, quantitative, noninvasive, and real-time indicator of EVLW in a rabbit model of lung water accumulation. Notably, the BLS displayed an obvious correlation with the experimental gravimetry results and could also be used to predict the pulmonary oxygenation status.

29 citations

Journal ArticleDOI
TL;DR: It is shown that the diagnostic accuracy of auscultation was better in non-ventilated than in ventilated patients, and that the agreement between lung ultrasound and auscultsation is poor.
Abstract: In critically ill patients, auscultation might be challenging as dorsal lung fields are difficult to reach in supine-positioned patients, and the environment is often noisy. In recent years, clinicians have started to consider lung ultrasound as a useful diagnostic tool for a variety of pulmonary pathologies, including pulmonary edema. The aim of this study was to compare lung ultrasound and pulmonary auscultation for detecting pulmonary edema in critically ill patients. This study was a planned sub-study of the Simple Intensive Care Studies-I, a single-center, prospective observational study. All acutely admitted patients who were 18 years and older with an expected ICU stay of at least 24 h were eligible for inclusion. All patients underwent clinical examination combined with lung ultrasound, conducted by researchers not involved in patient care. Clinical examination included auscultation of the bilateral regions for crepitations and rhonchi. Lung ultrasound was conducted according to the Bedside Lung Ultrasound in Emergency protocol. Pulmonary edema was defined as three or more B lines in at least two (bilateral) scan sites. An agreement was described by using the Cohen κ coefficient, sensitivity, specificity, negative predictive value, positive predictive value, and overall accuracy. Subgroup analysis were performed in patients who were not mechanically ventilated. The Simple Intensive Care Studies-I cohort included 1075 patients, of whom 926 (86%) were eligible for inclusion in this analysis. Three hundred seven of the 926 patients (33%) fulfilled the criteria for pulmonary edema on lung ultrasound. In 156 (51%) of these patients, auscultation was normal. A total of 302 patients (32%) had audible crepitations or rhonchi upon auscultation. From 130 patients with crepitations, 86 patients (66%) had pulmonary edema on lung ultrasound, and from 209 patients with rhonchi, 96 patients (46%) had pulmonary edema on lung ultrasound. The agreement between auscultation findings and lung ultrasound diagnosis was poor (κ statistic 0.25). Subgroup analysis showed that the diagnostic accuracy of auscultation was better in non-ventilated than in ventilated patients. The agreement between lung ultrasound and auscultation is poor. NCT02912624. Registered on September 23, 2016.

28 citations