scispace - formally typeset
Search or ask a question
Author

Wolfgang Haase

Bio: Wolfgang Haase is an academic researcher from Technische Universität Darmstadt. The author has contributed to research in topics: Liquid crystal & Ferroelectricity. The author has an hindex of 50, co-authored 624 publications receiving 11634 citations. Previous affiliations of Wolfgang Haase include Russian Academy of Sciences & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a distributed optical PMD equalizer with one piece of polarization-maintaining fiber twisted by 64 stepper motors has been proposed and tested in transmission systems with bit rates of 10, 20 and 40 Gb/s.
Abstract: Polarization mode dispersion (PMD), especially in "old" fibers, is considered harmful for installation and upgrading of trunk lines. An optical PMD equalizer should have several or many differential group delay (DGD) sections with polarization transformers in between which can endlessly transform any input polarization into a principal state of the following DGD section. The sections must practically have fixed DGDs unless there is only one section. The small-signal baseband transfer function for PMD, higher order PMD, and the necessary number of sections as well as their control by the output signals of an electrical filter bank in the receiver are also discussed in this context. Several PMD equalizers have been realized and successfully tested in transmission systems with bit rates of 10, 20, and 40 Gb/s. The systems operated stably with well-opened eye diagrams for DGDs ranging between 0 and 1.7 bit durations. Best performance is obtained from a distributed PMD equalizer with one piece of polarization-maintaining fiber twisted by 64 stepper motors. The principle can also be realized in LiNbO/sub 3/.

262 citations

Journal ArticleDOI
TL;DR: The catecholase activity of a series of dicopper(II) complexes containing different numbers of phenol groups coordinated to the metal centers was studied to identify functional as well as structural models for the type III copper enzymes tyrosinase and catechl oxidase.
Abstract: The catecholase activity of a series of dicopper(II) complexes containing different numbers of phenol groups coordinated to the metal centers was studied to identify functional as well as structural models for the type III copper enzymes tyrosinase and catechol oxidase. The syntheses and characterization of complexes [Cu(2)(H(2)bbppnol)(mu-OAc)(H(2)O)(2)]Cl(2).2H(2)O (1) and [Cu(2)(Hbtppnol)(mu-OAc)](ClO(4))(2) (2) were previously reported by us (Inorg. Chim. Acta 1998, 281, 111-115; Inorg. Chem. Commun. 1999, 2, 334-337), and complex [Cu(2)(P1-O(-))(OAc(-))](ClO(4))(2) (3) was previously reported by Karlin et al. (J. Am. Chem. Soc. 1997, 119, 2156-2162). The catalytic activity of the complexes 1-3 on the oxidation of 3,5-di-tert-butylcatechol was determined spectrophotometrically by monitoring the increase of the 3,5-di-tert-butyl-o-benzoquinone characteristic absorption band at about 400 nm over time in methanol saturated with O(2)/aqueous buffer pH 8 solutions at 25 degrees C. The complexes were able to oxidize 3,5-di-tert-butylcatechol to the corresponding o-quinone with distinct catalytic activity. A kinetic treatment of the data based on the Michaelis-Menten approach was applied. The [Cu(2)(H(2)bbppnol)(mu-OAc)(H(2)O)(2)]Cl(2) small middle dot2H(2)O complex showed the highest catalytic activity of the three complexes as a result of a high turnover rate (k(cat) = 28 h(-1)) combined with a moderate substrate-catalyst binding constant (K(ass) = 1.3 x 10(3) M(-1)). A mechanism for the oxidation reaction is proposed, and reactivity differences, k(cat)/K(M) of the complexes, were found to be dependent on (DeltaE)(1,2), the difference in the driving force for the reduction reactions Cu(II)(2)/Cu(II)Cu(I) and Cu(II)Cu(I)/Cu(I)(2).

262 citations

Journal ArticleDOI
TL;DR: In this paper, rare earth-containing metallomesogens with 4-alkoxy-N-alkyl-2-hydroxybenzaldimine ligands are reported and the stoichiometry of the complexes is [Ln(LH)(3)(NO3)(3)], where Ln is the trivalent rare earth ion;(Y, La, and Pr to Lu, except Pm) and LH is the Schiff base.
Abstract: Rare-earth-containing metallomesogens with 4-alkoxy-N-alkyl-2-hydroxybenzaldimine ligands are reported. The stoichiometry of the complexes is [Ln(LH)(3)(NO3)(3)], where Ln is the trivalent rare-earth ion;(Y, La, and Pr to Lu, except Pm) and LH is the Schiff base. The Schiff base ligands are in the zwitterionic form and coordinate through the phenolic oxygen only. The three nitrate groups coordinate in a bidentate fashion. The X-ray single-crystal structures of the nonmesogenic homologous complexes [Ln(LH)(3)(NO3)(3)]where Ln = Nd(III), Tb(III), and Dy(III) and LH = CH3OC6H3(2-OH)CH=NC4H9, are described. Although the Schiff base Ligands do not exhibit a mesophase, the metal complexes do (SmA phase). The mesogenic rare-earth complexes were studied by NMR, IR, EPR, magnetic susceptibility measurements, X-ray diffraction,and molecular modeling. The metal complexes in the mesophase have a very large magnetic anisotropy, so that these magnetic liquid crystals can easily be aligned by an external magnetic field.

242 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic properties of tetrameric oxygen-bridged copper (II) complexes have been determined in the temperature range 3.4-300 K. The cubane-type complexes exhibit magnetic interactions between the single copper ions, which can be explained on the basis of the isotropic Heisenberg-Dirac-van Vleck model.
Abstract: The magnetic properties of the tetrameric oxygen-bridged copper (II) complexes [{CuX(OCH2CH2NR2)}4](1)(R = Me, X = NCO; R =Prn, X = NCO; and R = Bun, X = NCO or NCS) have been determined in the temperature range 3.4–300 K. The cubane-type complexes exhibit magnetic interactions between the single copper (II) ions, which can be explained on the basis of the isotropic Heisenberg–Dirac–van Vleck model. The magnetism of (1; R = Me, X = NCO) can be explained on the basis of four non-interacting ‘dimeric’ units with the exchange integrals J1=–65 ± 3, J2=–0.6 ± 2, J3=–0.3 ± 2, and J4=–0.9 ± 2 cm–1. A linear relationship between the exchange integral and the Cu–O–Cu bridge angle has been established for symmetric bridged complexes. The magnetic properties of (1; R = Prn, X = NCO; R = Bun, X = NCO or NCS) could be fitted with a theoretical equation assuming C2v symmetry. The resulting exchange integrals J12=–30 ± 1, J34=–53 ± 3, J13= 8 ± 4 (1; R = Prn, X = NCO), J12=–28 ± 2, J34=–84 ± 10, J13= 21 ± 10 (1; R = Bun, X = NCO), and J12=–27 ± 2, J34=–72 ± 5, and J13=+15 ± 10 cm–1(1; R = Bun, X = NCS) reveal the existence of antiferromagnetic interaction within the ‘dimeric’ units and ferromagnetic interaction between them.

213 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices.
Abstract: Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.)

3,242 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations